Sound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation
Subject Areas : EngineeringR Selvamani 1 , J Rexy 2 , R Kumar 3
1 - Department of Mathematics, Karunya Institute of Technology and Sciences Coimbatore-641114, Tamilnadu, India
2 - Department of Mathematics, Karunya Institute of Technology and Sciences Coimbatore-641114, Tamilnadu, India
3 - Department of Mathematics, Kurukshetra University, Kurukshetra, Haryana, India
Keywords:
Abstract :
[1] Xiang-Fa W., Dzenis Y., 2006, Wave propagation in Nanofibers, Journal of Applied Physics 100: 1243181-4.
[2] Xiang-Fa W., Kostogorova – Beller Y.Y., Goponenko A.V., Hou H., Dzenis Y.A., 2008, Rippling of polymer Nanofibers, Physical Review E 78: 0618041-8.
[3] Xiang-Fa W., 2010, Wave propagation in prestretched polymer Nanofibers, Journal of Applied Physics 107: 0135091-8.
[4] Guang L., Tianshi X., Shenglin Y., Junhong J., Jianming J., 2012, Microwave absorption enhancement of porous carbon fibers compared with carbon Nanofibers, The Journal of Physical Chemistry 116: 9196-9201.
[5] Arefi M., Zenkour A., 2017, Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation, Theoretical and Applied Mechanics Letters 7(3): 145-151.
[6] Karlicic D., Murmu T., Caji M., Kozi P., Adhikari S., 2014, Dynamics of multiple viscoelastic carbon Nanotube based Nanocomposites with axial magnetic field, Journal of Applied Physics 115: 2343031-14.
[7] Ahmadi N., Shokri A.A., 2017, Optoelectronic properties of silicon hexagonal Nanotubes under an axial magnetic field, Optics Communications 395: 282-288.
[8] Ceballos D., Cisternas E., Vogel E.E., Allende S., 2018, Prevalence of information stored in arrays of magnetic Nanowires against external fields, Journal of Magnetism and Magnetic Materials 451: 676-680.
[9] Guarino V., Iannotti V., Ausanio G., Ambrosio L., Lanotte L., 2019, Elastomagnetic Nanofiber wires by magnetic field assisted electrospinning, Express Polymer Letters 13: 419-428.
[10] Jiabin X., Xinhua L., Zhijie Z., Li W., Rui T., Dongsheng Z., 2019, Controllable generation of Nanofibers through a magnetic-field-assisted electrospinning design, Materials Letters 247: 19-24.
[11] Arefi M., Zenkour A., 2017, Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation, Mechanics Research Communications 79: 51-62.
[12] Arefi M., 2016, Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials, Acta Mechanica 227(9): 2529-2542.
[13] Li Y., Chen Ch., Zhang S., Ni Y., Huang J., 2008, Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films, Applied Surface Science 254(18): 5766-5771.
[14] Arefi M., Zenkour A., 2016, A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment, Journal of Sandwich Structures & Materials 18(5): 624-651.
[15] Chang J., Dommer M., Chang Ch., Lin L., 2012, Piezoelectric nanofibers for energy scavenging applications, Nano Energy 1: 356-371.
[16] Tourki Samaei A., Gheshlaghi B., Wang G-F., 2013, Frequency analysis of piezoelectric Nanowires with surface effects, Current Applied Physics 13: 2098-2102.
[17] Liang X., Hu Sh., Shen Sh., 2015, Surface effects on the post-buckling of piezoelectric Nanowires, Physica E: Low-dimensional Systems and Nanostructures 69: 61-64.
[18] Arefi M., Zenkour A., 2016, Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory, Materials Research Express 3(11): 115704.
[19] Arefi M., 2016, Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage, Applied Mathematics and Mechanics 37(3): 289-302.
[20] Arefi M., Zamani M.H., Kiani M., 2018, Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak’s foundation, Journal of Intelligent Material Systems and Structures 28(17): 2403-2413.
[21] Arefi M., Zenkour A., 2019, Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam, Journal of Sandwich Structures and Materials 21(4): 1243-1270.
[22] Arefi M., Zenkour A., 2017, Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams, Applied Physics A 123(3): 202.
[23] Arefi M., Zenkour A., 2019, Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory, Journal of Sandwich Structures & Materials 21(8): 2751-2778.
[24] Arefi M., Zenkour A., 2017, Transient analysis of a three-layer microbeam subjected to electric potential, International Journal of Smart and Nano Material 8(1): 20-40.
[25] Yue Y.M., Xu K.Y., Chen T., 2016, A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects, Composite Structures 136: 278-286.
[26] Karnovsky I., Lebed O., 2001, Formulas for Structural Dynamics-Tables, Graphs, and Solutions, McGraw-Hill.
[27] Rafiee M., Yang J., Kitipornchai S., 2013, Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers, Composite Structures 96: 716-725.
[28] Liew K.M., Yang J., Kitipornchai S., 2003, Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading, International Journal of Solids and Structures 40(15): 3869-3892.
[29] Elgafy A., Lafdi K., 2005, Effect of carbon Nanofiber additives on thermal behavior of phase change materials, Carbon 43: 3067-3074.
[30] Zhao X., Huang C., Liu Q., Smalyukh Ivan I., Yang R., 2018, Thermal conductivity model for Nanofiber networks, Journal of Applied Physics 123: 085103-10.
[31] Wu D., Huang C., Zhong J., Lin Z., 2018, Influence factors of the inter-Nanowire thermal contact resistance in the stacked Nanowires, Physica B: Condensed Matter 537: 150-154.
[32] Malhotra A., Maldovan M., 2019, Thermal transport in semiconductor Nanotubes, International Journal of Heat and Mass Transfer 130: 368-374.
[33] Musavi Z., Rabani H., Mardaani M., 2019, The effect of thermal magnonic excitations on the electronic conductance of a magnetic Nanowire, Journal of Magnetism and Magnetic Materials 484: 367-372.
[34] Arefi M., Soltan Arani A.H., 2018, Higher order shear deformation bending results of a magneto electro thermo elastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments, Mechanics Based Design of Structures and Machines 46(6): 669-692.
[35] Chang T.P., 2012, Thermal–mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Applied Mathematical Modelling, 36(5): 1964-1973.
[36] Heireche H., Tounsi A., Benzair A., Mechab I., 2008, Sound wave propagation in single-walled carbon Nanotubes with initial axial stress, Journal of Applied Physics 104: 014301.
[37] Berrabah H.M., Sekrane N.Z., Adda B.E., 2016, Comparative study of sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity for two materials (Al) and (Ni), Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 18: 20-34.
[38] Wang Y-Z., Wang Y-Sh., Ke L-L., 2016, Nonlinear vibration of carbon Nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory, Physica E: Low-dimensional Systems and Nanostructures 83: 195-200.
[39] Wang Y-Z., Li F-M., 2016, Dynamical parametric instability of carbon Nanotubes under axial harmonic excitation by nonlocal continuum theory, Journal of Physics and Chemistry of Solids 95: 19-23.
[40] Amir A., Tripathi V.K., 2005, Parametric excitation of higher-order electromechanical vibrations of carbon Nanotubes, Physical Review B 72: 193409-4.