On The Free Vibration of Doubly Clamped Single-Walled Coiled Carbon Nanotubes: A Novel Size Dependent Continuum Model
Subject Areas : Engineering
1 - Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran
2 - Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran
Keywords:
Abstract :
[1] Iijima S., 1991, Helical microtubules of graphitic carbon, Nature 354: 56-58.
[2] Liu L., Liu F., Zhao J., 2014, Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications, Nano Research 7(5): 626-657.
[3] Ihara S., Itoh S., Kitakami J.-i., 1993, Helically coiled cage forms of graphitic carbon, Physical Review B 48(8): 5643-5647.
[4] Biró L.P., Lazarescu S.D., Thiry P.A., Fonseca A., Nagy J.B., Lucas A.A., Lambin P., 2000, Scanning tunneling microscopy observation of tightly wound, single-wall coiled carbon nanotubes, Europhysics Letters (EPL) 50(4): 494-500.
[5] Chang J.H., Park W., 2006, Nano elastic memory using carbon nanocoils, Journal of Nanobiotechnology 3(1): 30-35.
[6] Volodin A., Buntinx D., Ahlskog M., Fonseca A., Nagy J.B., Van Haesendonck C., 2004, Coiled carbon nanotubes as self-sensing mechanical resonators, Nano Letters 4(9): 1775-1779.
[7] Bell D.J., Sun Y., Zhang L., Dong L.X., Nelson B.J., Grutzmacher D., 2005, Three-dimensional nanosprings for electromechanical sensors, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems 11: 15-18.
[8] Hernadi K., Thiên-Nga L., Forró L., 2001, Growth and microstructure of catalytically produced coiled carbon nanotubes, The Journal of Physical Chemistry B 105(50): 12464-12468.
[9] Lau K.T., Lu M., Hui D., 2006, Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures, Composites Part B: Engineering 37(6): 437-448.
[10] Wu J., He J., Odegard G.M., Nagao S., Zheng Q., Zhang Z., 2013, Giant stretchability and reversibility of tightly wound helical carbon nanotubes, Journal of the American Chemical Society 135(37): 13775-13785.
[11] Behera L., Chakraverty S., 2017, Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review, Archives of Computational Methods in Engineering 24(3): 481-494.
[12] da Fonseca A.F., Galvão D.S., 2004, Mechanical properties of nanosprings, Physical Review Letters 92(17): 175502.
[13] Liu L., Gao H., Zhao J., Lu J., 2010, Superelasticity of carbon nanocoils from atomistic quantum simulations, Nanoscale Research Letters 5(3): 478-483.
[14] Ghaderi S.H., Hajiesmaili E., 2013, Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method, Materials Science and Engineering: A 582: 225-234.
[15] Wang J., Kemper T., Liang T., Sinnott S.B., 2012, Predicted mechanical properties of a coiled carbon nanotube, Carbon 50(3): 968-976.
[16] Wu J., He J., Odegard G.M., Nagao S., Zheng Q., Zhang Z., 2013, Giant stretchability and reversibility of tightly wound helical carbon nanotubes, Journal of the American Chemical Society 135(37): 13775-13785.
[17] Khani N., Yildiz M., Koc B., 2016, Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study, Materials & Design 109: 123-132.
[18] Kianfar A., Seyyed Fakhrabadi M.M., Mashhadi M.M., 2019, Prediction of mechanical and thermal properties of polymer nanocomposites reinforced by coiled carbon nanotubes for possible application as impact absorbent, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234(4): 882-902.
[19] Yarali E., Baniassadi M., Baghani M., 2019, Numerical homogenization of coiled carbon nanotube reinforced shape memory polymer nanocomposites, Smart Materials and Structures 28(3): 035026.
[20] Fakhrabadi M.M.S., Amini A., Reshadi F., Khani N., Rastgoo A., 2013, Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes, Computational Materials Science 73: 93-112.
[21] Rahmani O., Darvishi F., 2018, Investigation of the free longitudinal vibration of single-walled coiled carbon nanotubes (SWCCNTs) using molecular dynamics simulation, Amirkabir Journal of Mechanical Engineering 51:1-3.
[22] Arash B., Wang Q., Wu N., 2012, Gene detection with carbon nanotubes, Journal of Nanotechnology in Engineering and Medicine 3(2): 020902.
[23] Gajbhiye S.O., Singh S.P., 2015, Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff–Brenner potential, Acta Mechanica 226(11): 3565-3586.
[24] Ramezani Ali-Akbari H., Firouz-Abadi R., 2015, Nonlinear free vibration of single-walled carbon nanotubes embedded in viscoelastic medium based on asymptotic perturbation method, Journal of Science and Engineering 06: 42-58.
[25] Farokhi H., Païdoussis M.P., Misra A.K., 2016, A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators, Journal of Sound and Vibration 378: 56-75.
[26] Hussain M., Naeem M.N., 2017, Vibration analysis of single-walled carbon nanotubes using wave propagation approach, International Journal of Mechanical Sciences 8(1): 155-164.
[27] Tadi Beni Y., Mehralian F., Karimi Zeverdejani M., 2017, Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality, Journal of Low Frequency Noise, Vibration and Active Control 36(3): 277-293.
[28] Jiang J., Wang L., Zhang Y., 2017, Vibration of single-walled carbon nanotubes with elastic boundary conditions, International Journal of Mechanical Sciences 122: 156-166.
[29] Shahabodini A., Ansari R., Darvizeh M., 2018, Atomistic-continuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method, Composite Structures 185: 728-747.
[30] Chwał M., 2018, Nonlocal analysis of natural vibrations of carbon nanotubes, Journal of Materials Engineering and Performance 27(11): 6087-6096.
[31] Eltaher M.A., Almalki T.A., Almitani K.H., Ahmed K.I.E., Abdraboh A.M., 2019, Modal participation of fixed–fixed single-walled carbon nanotube with vacancies, International Journal of Advanced Structural Engineering 11(2): 151-163.
[32] Majeed A., Zeeshan A., Mubbashir S., 2019, Vibration analysis of carbon nanotubes based on cylindrical shell by inducting Winkler and Pasternak foundations, Mechanics of Advanced Materials and Structures 26(13): 1140-1145.
[33] Hussain M., Naeem M.N., 2020, Mass density effect on vibration of zigzag and chiral SWCNTs: A theoretical study, Journal of Sandwich Structures & Materials DOI:10.1177/1099636220906257.
[34] Hayati H., Hosseini S.A., Rahmani O., 2017, Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory, Microsystem Technologies 23(7): 2393-2401.
[35] Wahl A.M., 1963, Mechanical Springs, McGraw-Hill, New York.
[36] Wittrick W.H., 1966, On elastic wave propagation in helical springs, International Journal of Mechanical Sciences 8(1): 25-47.
[37] Mottershead J.E., 1980, Finite elements for dynamical analysis of helical rods, International Journal of Mechanical Sciences 22(5): 267-283.
[38] Pearson D., 1982, The transfer matrix method for the vibration of compressed helical springs, Journal of Mechanical Engineering Science 24(4): 163-171.
[39] Yildirim V., 1996, Investigation of parameters affecting free vibration frequency of helical springs, International Journal for Numerical Methods in Engineering 39(1): 99-114.
[40] Yildirim V., On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion, Meccanica 47(4): 1015-1033.
[41] Yildirim V., 2016, Axial static load dependence free vibration analysis of helical springs based on the theory of spatially curved bars, Latin American Journal of Solids and Structures 13: 2852-2875.
[42] Lee J., Thompson D.J., 2001, Dynamic stiffness formulation, free vibration and wave motion of helical springs, Journal of Sound and Vibration 239(2): 297-320.
[43] Lee J., 2007, Free vibration analysis of cylindrical helical springs by the pseudospectral method, Journal of Sound and Vibration 302(1): 185-196.
[44] Yu A.M., Yang C., 2010, Formulation and evaluation of an analytical study for cylindrical helical springs, Acta Mechanica Solida Sinica 23(1): 85-94.
[45] Washizu K., 1964, Some considerations on a naturally curved and twisted slender beam, Journal of Mathematics and Physics 43(1-4): 111-116.
[46] Timoshenko S.P., Goodier J.N., 1951, Theory of Elasticity, McGraw-HilI.
[47] Brancheriau L., 2006, Influence of cross section dimensions on Timoshenko’s shear factor – Application to wooden beams in free-free flexural vibration, Annals of Forest Science 63(3): 319-321.
[48] Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54(9): 4703-4710.
[49] Challamel N., Zhang Z., Wang C.M., Reddy J.N., Wang Q., Michelitsch T., Collet B., 2014, On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach, Archive of Applied Mechanics 84(9): 1275-1292.
[50] Hache F., 2018,Vibration of Nonlocal Carbon Nanotubes and Graphene Nanoplates, Université de Bretagne Sud.
[51] Bert C.W., Malik M., 1996, Differential quadrature method in computational mechanics: A review, Applied Mechanics Reviews 49(1): 1-28.
[52] Malekzadeh P., Golbahar Haghighi M.R., Atashi M.M., 2010, Out-of-plane free vibration of functionally graded circular curved beams in thermal environment, Composite Structures 92(2): 541-552.
[53] Zhang Y.Y., Wang C.M., Tan V.B.C., 2009, Assessment of timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics, Advances in Applied Mathematics and Mechanics 1(1): 89-106.
[54] Arash B., Ansari R., 2010, Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain, Physica E: Low-Dimensional Systems and Nanostructures 42(8): 2058-2064.