Vibration Analysis of a Magneto Thermo Electrical Nano Fiber Reinforced with Graphene Oxide Powder Under Refined Beam Model
Subject Areas : Mechanics of SolidsR Selvamani 1 , J Rexy 2 , F Ebrahimi 3
1 - Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamilnadu, India
2 - Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamilnadu, India
3 - Department of Mechanical Engineering, Imam Khomieni International University, Qazvin, Iran
Keywords:
Abstract :
[1] Ni Z., Bu H., Zou M., Yi H., Bi K., Chen Y., 2010, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B: Condensed Matter 405: 1301-1306.
[2] Emam S., Eltaher M., 2016, Buckling and postbuckling of composite beams in hygrothermal environments, Composite Structures 152: 665-675.
[3] Arefi M., Zenkour A.M., 2017, Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation, Mechanics Research Communications 79: 51-62.
[4] Ke L.L., Wang Y.S., 2014, Free vibration of size-dependent magneto–electro-elastic nanobeams based on the nonlocal theory, Physica E 63: 52-61.
[5] Kheibari F., Beni Y.T., 2017, Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model, Materials and Design 114: 572-583.
[6] Selvamani R., Ebrahimi F., 2020, Axisymmetric vibration in a submerged, piezoelectric rod coated with thin film, Trends in Mathematics 2020: 203-211.
[7] Ke L., Wang Y., Reddy J., 2014, Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions, Composite Structures 116: 626-636.
[8] Ebrahimi F., Jafari A., Selvamani R., 2020, Thermal buckling analysis of magneto electro elastic porous FG beam in thermal environment, Advanes in Nano Research 8(1): 83-94.
[9] Alibeigi B., Beni Y.T., Mehralian F., 2018, On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams, The European Physical Journal Plus 133(3): 133.
[10] Liu D., Kitipornchai S., Chen W., 2018, Three dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell, Composite Structures 189: 560-569.
[11] Shen H.S., Xiang Y., Lin F., 2017, Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments, Composites Part B: Engineering 119: 67-78.
[12] Zhang Z., Li Y., Wu H., Zhang H., Wu H., Jiang S., Chai G., 2018, Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory, Mechanics of Advanced Materials and Structures 27: 3-11.
[13] Garcia-Macias E., Rodriguez-Tembleque L., Saez A., 2018, Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates, Composite Structures 186: 123-138.
[14] Martin-Gallego M., Bernal M.M., Hernandez M., Verdejo R., Lopez-Manchado M.A., 2013, Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites, European Polymer Journal 49: 1347-1353.
[15] Im H., Kim J., 2012, Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite, Carbon 50: 5429-5440.
[16] Ebrahimi F., Nouraei M., Dabbagh A., 2020, Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates, Engineering with Computers 36: 879-895.
[17] Ebrahimi F., Nouraei M., Dabbagh A., 2019, Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment, Mechanics Based Design of Structures and Machines 48: 1-24.
[18] Ebrahimi F., Dabbagh A., Civalek O., 2019, Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams, Journal of Vibration and Control 25: 2837-2849.
[19] Mao J.J., Zhang W., 2018, Linear and nonlinear free and forced vibrations of grapheme reinforced piezoelectric composite plate under external voltage excitation, Composite Structures 203: 551-565.
[20] Mao J.J., Zhang W., 2019, Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces, Composite Structures 216: 392-405.
[21] Ebrahimi F., Karimiasl M., Selvamani R., 2020, Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading, Advances in Nano Research 8(3): 203-214.
[22] Ebrahimi F., Kokaba M., Shaghaghi G., Selvamani R., 2020, Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions, Advances in Nano Research 8(2): 169-182.
[23] Ebrahimi F.S., Hosseini H., Selvamani R., 2020, Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field, Structural Engineering and Mechanics 73(5): 565-584.
[24] Mahaveer sree jayan M., Selvamani R., 2020, Chirality and small scale effects on embedded thermo elastic carbon nanotube conveying fluid, Journal of Physics Conference Series 1597: 012011.
[25] Mahaveer sree jayan M., Kumar R., Selvamani R., Rexy J., 2020, Nonlocal dispersion analyisis of a fluid conveying thermo elastic armchair single walled carbon nanotube under moving harmonic excitation, Journal of Solid Mechanics 12(1): 189-203.
[26] Rexy J., Selvamani R., Anitha L., 2020, Thermo piezoelectric sound waves in a nanofiber using Timoshenko beam theory incorporated with surface effect, Journal of Physics: Conference Series 1597: 012012.
[27] Selvamani R., Rexy J., Kumar R., 2020, Sound Wave Propagation in a multiferroic thermo elastic Nano Fiber under the influence of surface effect and parametric excitation, Journal of Solid Mechanics 12(2): 493-504.
[28] Calin I., Ochsner A., Vlase S., Marin M., 2019, Improved rigidity of composite circular plates through radial ribs, Proceedings of the Institution of Mechanical Engineers Part L - Journal of Materials-Design and Applications 233(8): 1585-1593.
[29] Vlase S., Marin M., Ochsner A., Scutaru M.L., 2019, Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system, Continuum Mechanics and Thermodynamics 31(3): 715-724.
[30] Bhatti M., Marin M., Zeeshan A., Ellahi R., Sara A., 2020, Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries, Frontiers in Physics 8: 1-12.