Surface Degradation of Polymer Matrix Composites Under Different Low Thermal Cycling Conditions
Subject Areas : Engineering
1 - Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan, Kashan, Iran
2 - Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan, Kashan, Iran
Keywords:
Abstract :
[1] Sethi S., Ray B.Ch., 2014, Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability, Advances in Colloid and Interface Science 217: 43-67.
[2] Chung K., Seferis J.C., Nam J.D., 2000, Investigation of thermal degradation behavior of polymeric composites: prediction of thermal cycling effect from isothermal data, Composites: Part A 31: 945-957.
[3] Meyer M.R., Friedman R.J., Schutte H.D.J., Jr L.R.A., 1994, Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments, Journal of Biochemical Materials Research 28: 1221-1231.
[4] Yu Q., Chen P., Gao Y., Mu J., Chen Y., Lu Ch., Liu D., 2011, Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite, Materials Chemistry and Physics 130: 1046-1053.
[5] Moon J.B., Kim M. G., Kim Ch. G., Bhowmik Sh., 2011, Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply, Composites: Part A 42: 694-701.
[6] Paillous A. Pailler C., 1994, Degradation of multiply polymer–matrix composites induced by space environment, Composites 25(4): 287-295.
[7] Chao Zh., Binienda K.W., Morscher G.N., Martin R.E., Kohlman L.W., 2013, Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites, Composites Part A: Applied Science and Manufacturing 46: 34-44.
[8] Nam J.D., Seferis J.C., 1992, Anisotropic thermo-oxidative stability of carbon fiber reinforced polymeric composites, SAMPE Quarterly 24: 10-18.
[9] Shin K.B., Kim C.G., Hong C.S., Lee H.H., 2000, Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments, Composites Part B 31(3): 223-235.
[10] Lafarie-Frenot M.C., 2006, Damage mechanisms induced by cyclic ply-stresses in carbon–epoxy laminates: Environmental effects, International Journal of Fatigue 28(10): 1202-1216.
[11] Lafarie-Frenot M.C., Grandidier J.C., Gigliotti M., Olivier L., Colin X., Verdu J., Cinquin J., 2010, Thermo-oxidation behaviour of composite materials at high temperatures: A review of research activities carried out within the COMEDI program, Polymer Degradation and Stability 95(6): 965-974.
[12] Taguchi G., Konishi S., 1987, Taguchi Methods, Orthogonal Arrays and Linear Graphs, Tools for Quality Engineering, American Supplier Institute Dearborn.
[13] Dobrzañski L.A., Domaga J., Silva J.F., 2007, Application of taguchi method in the optimization of filament winding of thermoplastic composites, Archives of Materials Science and Engineering 28(3): 133-140.
[14] Ghasemi A.R., Baghersad R., Sereshk M.R.V., 2011, Non-linear behavior of polymer based composite laminates under cyclic thermal shock and its effects on residual stresses, Journal of Polymer Science and Technology 24(2): 133-140.
[15] Ghasemi A.R., Baghersad R., 2012, Analytical and experimental studies of cyclic thermal shock effects on nonlinear behavior of composite laminates, Journal of Aeronautical Engineering 14(2): 11-16.
[16] ASTM, D. D 3039M-95a, 1997, Standard test method for tensile properties of polymer matrix composite materials.
[17] MINITAB 17 statistical software, Minitab Inc, 2013.
[18] Colin X., Marais C., Verdu J., 2002 , Kinetic modelling and simulation of gravimetric curves: application to the oxidation of bismaleimide and epoxy resins, Polymer Degradation and Stability 78: 545-553.