The Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model
Subject Areas : EngineeringA.R Golkarian 1 , M Jabbarzadeh 2
1 - Department of Mechanical Engineering, Mashhad branch, Islamic Azad University
2 - Department of Mechanical Engineering, Mashhad branch, Islamic Azad University
Keywords:
Abstract :
[1] Chang T., Gao H., 2003, Size dependent elastic properties of a single-walled carbon nanotube via molecular mechanics, Journal of the Mechanics and Physics of Solids 51: 1059-74.
[2] Nasdala L., Ernst G., 2005, Development of a 4 node finite element for the computation of nano-structured materials, Computational Materials Science 33: 443-58.
[3] Li C., Chou T-W., 2003, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures 40: 2487–99.
[4] Kalamkarov A.L., Georgiades A.V., Rokkam S.K., Veedu V.P., Ghasemi-Nejhad M.N., 2006, Analytical and numerical techniques to predict carbon nanotubes properties, International Journal of Solids and Structures 43: 6832-54.
[5] Meo M., Rossi M., 2006, Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling, Composites Science and Technology 66: 1597-605.
[6] Giannopoulos G.I., Kakavas P.A., Anifantis N.K., 2008, Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach, Computational Materials Science 41: 561-9.
[7] Papanikos P., Nikolopoulos D., 2008, Equivalent beams for carbon nanotubes, Computational Materials Science 43: 345-352.
[8] Hemmasizadeh A., Mahzoon M., 2008, A method for developing the equivalent continuum model of a single layer graphene sheet,Thin Solid Films 516: 7636-40.
[9] Shokrieh M.M., Rafiee R., 2010, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Material and Design 31: 790-795.
[10] Georgantzinos S.K., Giannopoulos G.I., 2010, Numerical investigation of elastic mechanical properties of grapheme structures, Material and Design 31: 4646-54.
[11] Georgantzinos S.K., Katsareas D.E., 2011, Graphene characterization: A fully non-linear spring-based finite element prediction, Physica E 43: 1833-39.
[12] Rafiee R., Heidarhaei M., 2012, Investigation of chirality and diameter effects on the Young’s modulus of carbon nanotubes using non-linear potentials, Composite Structure 94: 2460-64.
[13] Koloczek J., Young-Kyun K., 2001, Characterization of spatial correlations in carbon nanotubes-modelling studies, Journal of Alloys and Compounds 28: 222-225.
[14] Rappe A.K., Casemit C.J., 1992, A full periodictable force-field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical society 114: 10024-35.
[15] Xiao J.R., Gama B.A., An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes, International Journal of Solids and Structures 42: 3075-92.
[16] K. Machida, 1999, Principles of molecular mechanics, Wiley ed., Wiley and Kodansha.
[17] Dresselhaus M.S., Dresselhaus G., Saito R., 1995, Physics of Carbon Nanotubes, Carbon 33(7):883–91.
[18] WenXing B., ChangChun Z., 2004, Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics, Physica B 352: 156-63.
[19] Jin Y., Yuan F.G., 2003, Simulation of elastic properties of single-walled carbon nanotubes, Composites Science and Technology 63: 1507-15.
[20] Gupta S., Dharamvir K., 2005, Elastic moduli of single-walled carbon nanotubes and their ropes, Physical Review B 72: 165428(1-16).
[21] Tserpes K.I., Papanikos P., 2005, Finite element modeling of single-walled carbon nanotubes, Composites Part B: Engineering 36: 468-477.