Stress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method
Subject Areas : Engineering
1 - School of Mechanical Engineering, Shiraz University
2 - School of Mechanical Engineering, Shiraz University
Keywords:
Abstract :
[1] Rieth M., Schommers W., 2005, Handbook of Theoretical and Computational Nanotechnology, Basic Concepts, Nanomachines and Bionanodevices, Forschungszentrum Karlsruhe, Germany 1:1-33.
[2] Shariyat M., Darabi E.A., 2013, Variational iteration solution for elastic–plastic impact of polymer/clay nanocomposite plates with or without global lateral deflection, employing an enhanced contact law, International Journal of Mechanics and Scienc 67:14-27.
[3] Jafari Mehrabadi S., Sobhani Aragh B., Khoshkhahesh V., 2012, Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes ,Composite Part B: Engineering 43:2031-2040.
[4] Belay O.V., Kiselev S.P., 2011, Molecular dynamics simulation of deformation and fracture of a “copper- molybdenum” nanocomposite plate under uniaxial tension, Physical Mesomechanics 14:145-153.
[5] Yas M.H., Pourasghar A., Kamarian S., 2013, Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube , Material Design 49:583-590.
[6] Moradi-Dastjerdi R., Foroutan M., Pourasghar A., 2013, Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method, Material Design 44:256-266.
[7] Heshmati M., Yas M.H., 2013, Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads, Material Design 49:894-904.
[8] Shen H.S., Xiang Y., 2013, Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment Composite Part B: Engineering 52:311-322.
[9] Eftekhari S.A., Jafari A.A., 2013, Modified mixed Ritz-DQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions , Applied Mathematical Modelling 37(12–13):7398–7426.
[10] Upadhyay A.K., Shukla K.K., 2013, Geometrically nonlinear static and dynamic analysis of functionally graded skew plates, Communications in Nonlinear Science and Numerical Simulation 18:2252-2279.
[11] Jaberzadeh E., Azhari M., Boroomand B., 2013, Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free Galerkin method, Applied Mathematical Modelling 37(10–11):6838–6854.
[12] Daripa R., Singha M.K., 2009, Influence of corner stresses on the stability characteristics of composite skew plates, International Journal of Non-Linear Mechanics 44(2):138-146.
[13] Kumar N., Sarcar M.S.R., Murthy M.M.M., 2009, Static analysis of thick skew laminated composite plate with elliptical cutout, Indian Journal of Engineering Material Science 16:37-43.
[14] Karami G., Shahpari S.A., Malekzadeh P., 2003, DQM analysis of skewed and trapezoidal laminated plates, Composite Structure 59:393-402.
[15] Malekzadeh P., Karami G., 2006, Differential quadrature nonlinear analysis of skew composite plates based on FSDT, Engineering Structure 28(9):1307-1318.
[16] Malekzadeh P., 2007, A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates, Thin-Walled Structure 45(2):237-250.
[17] Malekzadeh P., 2008, Differential quadrature large amplitude free vibration analysis of laminated skew plates, on FSDT, Composite Structure 83(2):189-200.
[18] Das D., Sahoo P., Saha K.A., 2009, Variational analysis for large deflection of skew under uniformly distributed load through domain mapping technique, International Journal of Engineering Science and Technology 1:16-32.
[19] Griebal M., Hamaekers J., 2005, Molecular dynamics simulations of the mechanical properties of polyethylene-carbon nanotube composites, Institut fur Numerische Simulation, Germani.
[20] Malekzadeh P., 2008, Nonlinear free vibration of tapered Mindlin plates with edges elastically restrained against rotation using DQM, Thin-Walled Structure 46:11-26.
[21] Hashemi M.R., Abedini M.j., Neill S.p., Malekzadeh P., 2008, Tidal and surge modelling using differential quadrature: A case study in the Bristol Channel, Coastal Engineering 55:811-819.
[22] Alibeygi Beni A., Malekzadeh P., 2012, Nonlocal free vibration of orthotropic non-prismatic skew nanoplates, Composite Structure 94:3215-3222.
[23] Malekzadeh P., Heydarpour Y., 2013, Free vibration analysis of rotating functionally graded truncated conical shells, Composite Structure 97:176-188.
[24] Sadd M.H., 2009, Elasticity, Theory, Applications, and Numerics, Elsevier.
[25] Griebel M., Hamaekers J., 2004, Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites, Computer Methods in Applied Mechanics and Engineering 193:1773-1788.