Dynamic Instability of Visco-SWCNTs Conveying Pulsating Fluid Based on Sinusoidal Surface Couple Stress Theory
Subject Areas : EngineeringA Ghorbanpour Arani 1 , R Kolahchi 2 , M Jamali 3 , M Mosayyebi 4 , I Alinaghian 5
1 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran---
Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran
2 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
3 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
4 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
5 - Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Keywords:
Abstract :
[1] Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., Fan S., 2009, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Letters 9: 3137-3141.
[2] Wong M., Gullapalli S., 2011, Nanotechnology: A Guide to Nano-Objects, Chemical Engineering Progress.
[3] Şimşek M., Reddy J.N., 2013, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, International Journal of Engineering Science 64: 37-53.
[4] Wang L., Xu Y.Y., Ni Q., 2013, Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment, International Journal of Engineering Science 68: 1-10.
[5] Thai H-T., Vo T.P., 2012, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, International Journal of Engineering Science 54: 58-66.
[6] Kiani K., 2013, Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model, Applied Mathematical Modelling 37: 1836-1850.
[7] Khodami Maraghi Z., Ghorbanpour Arani A., Kolahchi R., Amir S., Bagheri M.R., 2013, Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid, Composites Part B: Engineering 45: 423-432.
[8] Murmu T., Pradhan S.C., 2009, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E: Low-Dimensional Systems and Nanostructures 41: 1232-1239.
[9] Ghorbanpour Arani A., Kolahchi R., Hashemian M., 2014, Nonlocal surface piezoelasticity theory for dynamic stability of double-walled boron nitride nanotube conveying viscose fluid based on different theories, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
[10] Liang F., Su Y., 2013, Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect, Applied Mathematical Modelling 37: 6821-6828.
[11] Mirramezani M., Mirdamadi H.R., Ghayour M., 2013, Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure, Computational Materials Science 77: 161-171.
[12] Kaviani F., Mirdamadi H.R., 2013, Wave propagation analysis of carbon nano-tube conveying fluid including slip boundary condition and strain/inertial gradient theory, Computers & Structures 116: 75-87.
[13] Lee H.L., Chang W.J., 2010, Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory, Journal of Applied Physics 108: 093503.
[14] Gheshlaghi B., Hasheminejad S.M., 2011, Surface effects on nonlinear free vibration of nanobeams, Composites Part B: Engineering 42: 934-937.
[15] Malekzadeh P., Shojaee M., 2013, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams, Composites Part B: Engineering 52: 84-92.
[16] Kiani K., 2014, Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field, Journal of Physics and Chemistry of Solids 75: 15-22.
[17] Wang H., Dong K., Men F., Yan Y.J., Wang X., 2010, Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix, Applied Mathematical Modelling 34: 878-889.
[18] Ghorbanpour Arani A., Amir S., Dashti P., Yousefi M., 2014, Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect, Computational Materials Science 86: 144-154.
[19] Lei Y., Adhikari S., Friswell M.I., 2013, Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams, International Journal of Engineering Science 66: 1-13.
[20] Ghorbanpour Arani A., Amir S., 2013, Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory, Physica B: Condensed Matter 419: 1-6.
[21] Lei Y., Murmu T., Adhikari S., Friswell M.I., 2013, Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams, European Journal of Mechanics - A/Solids 42: 125-136.
[22] Gurtin M., Ian Murdoch A., 1975, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57: 291-323.
[23] Gurtin M., Ian Murdoch A., 1978, Surface stress in solids, International Journal of Solids and Structures 14: 431-440.
[24] Ansari R., Ashrafi M.A., Pourashraf T., Sahmani S., 2015, Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory, Acta Astronautica 109: 42-51.
[25] Shaat M., Mohamed S.A., 2014, Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories, International Journal of Mechanical Sciences 84: 208-217.
[26] Ansari R., Sahmani S., 2011, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science 49: 1244-1255.
[27] Bolotin V.V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco.
[28] Lanhe W., Hongjun W., Daobin W., 2007, Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method, Composite Structures 77: 383-394.
[29] Lei X.-w., Natsuki T., Shi J.-x., Ni Q.-q., 2012, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B: Engineering 43: 64-69.