Semi-analytical Solution for Time-dependent Creep Analysis of Rotating Cylinders Made of Anisotropic Exponentially Graded Material (EGM)
Subject Areas : EngineeringA Loghman 1 , V Atabakhshian 2
1 - Faculty of Mechanical Engineering, University of Kashan
2 - Department of Mechanical Engineering, Faculity of Engineering, Bu-Ali Sina University
Keywords:
Abstract :
[1] Nie G.J., Batra R.C., 2010, Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders, Composite Structures 92 : 265–274.
[2] Bayat M., Sahari B.B., Saleem M., Ali A., Wong S.V., 2009, Bending analysis of a functionally graded rotating disk based on the first order shear deformation theory, Applied Mathematical Modelling 33 : 4215–4230.
[3] Ghorbanpour Arani A., Loghman A., Abdollahitaher A., Atabakhshian V., 2011, Electrothermomechanical behaviour of a radially polarized functionally graded piezoelectric cylinder, Journal of Mechanics of Materials and Structures 6 (6): 869–882.
[4] You L.H., Zhang J.J., You X.Y., 2005, Elastic analysis of internally pressurized thick-walled spherical pressure vessel of functionally graded materials, International Journal ofPressure Vessels and Piping 82: 347–354.
[5] Fukui Y., Yamanaka N., 1992, Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure, JSME International Journal Series I 35: 379-385.
[6] Loghman A., Wahab M.A., 1996, Creep damage simulation of thick-walled tubes using the theta projection concept, International Journal ofPressure Vessels and Piping 67: 105-111.
[7] Evans R.W., Parker J.D., Wilsher B., 1992, The theta projection concept a model based approach to design and life extention of engineering plant, International Journal ofPressure Vessels and Piping 50: 60-147.
[8] Loghman A., Shokouhi N., 2009, Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model, JournalofMechanical ScienceandTechnology 23: 2577-2582.
[9] Aleayoub S.M.A., Loghman A., 2010, Creep stress redistribution Analysis of thick-walled FGM spheres, Journal of solid Mechanics 2 (2) :115-128.
[10] Chen J.J., Tu S.T., Xuan F.Z., Wang Z.D., 2007, Creep analysis for a functionally graded cylinder subjected to internal and external pressure, The Journal of Strain Analysis Engineering Design 42: 69-77.
[11] You L.H., Ou H., Zheng Z.Y., 2007, Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subject to internal pressure, Composite Structures 78:285-291.
[12] Singh T., Gupta V.K., 2011, Effect of anisotropy on steady state creep in functionally graded cylinder, Composite Structures 93:747-758.
[13] Yang Y.Y., 2000, Time-dependent stress analysis in functionally graded material, International Journal of Solids and Structures 37:7593-7608.
[14] Xuan F.Z., Chen J.J., Wang Z., Tu S.T., 2009, Time-dependent deformation and fracture of multi-material systems at high temperature, International Journal ofPressure Vessels and Piping 86: 604-615.
[15] Loghman A., Ghorbanpour Arani A., Amir S., Vajedi A., 2010, Magnetothermoelastic creep analysis of functionally graded cylinders, International Journal ofPressure Vessels and Piping 87:389-395.
[16] Loghman A., Aleayoub S.A.M., Hasani Sadi M., 2012, Time-dependent magnetothermoelastic creep Modeling of FGM spheres using method of successive elastic solution, Applied Mathematical Modelling 36: 836-845.
[17] Loghman A., Ghorbanpour Arani A., Aleayoub S.A.M., 2011, Time-dependent creep stress redistribution analysis of functionally graded spheres, Mechanics Time-Dependent Materials 15: 353-365.
[18] Loghman A., Ghorbanpour Arani A., Shajari A.R., Amir S., 2011, Time-dependent thermoelastic creep analysis of rotating disk made of Al–SiC composite, Archive of Applied Mechanics 81:1853-1864.
[19] Hosseini SM., Akhlaghi M., Shakeri M., 2007, Transient heat conduction in functionally graded thick hollow cylinders by analytical method, International Journal of Heat and Mass Transfer 43: 669-675.
[20] Abramowitz M., Stegun I., 1965, Handbook of Mathematical Functions, New York: Dover Publications Inc.
[21] Hosseini Kordkheili S.A., Naghdabadi R., 2007, Thermo-elastic analysis of a functionally graded rotating disk, Composite Structures 79: 508-516.
[22] Penny RK., Marriott DL., 1995, Design for creep, London, Chapman & Hall.