Weight Optimum Design of Pressurized and Axially Loaded Stiffened Conical Shells to Prevent Stress and Buckling Failures
Subject Areas : EngineeringM Talebitooti 1 , M Fadaee 2 , M.H Seyyedsharbati 3 , M.M Shojaee 4
1 - Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
2 - Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
3 - Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
4 - Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
Keywords:
Abstract :
[1] Patel J.M., Patel T.S., 1980, Minimum weight design of the stiffened cylindrical shell under pure bending, Computers & Structures 11: 559-563.
[2] Simitses G.J., Giri J., 1978, Optimum weight design of stiffened cylinders subjected to torsion combined with axial compression with and without lateral pressure, Computers & Structures 8: 19-30.
[3] Simões L.M.C., Farkas J., Jármai K., 2006, Reliability-based optimum design of a welded stringer-stiffened steel cylindrical shell subject to axial compression and bending, Structural and Multidisciplinary Optimization 31: 147-155.
[4] Bushnell D., Bushnell W.D., 1996, Approximate method for the optimum design of ring and stringer stiffened cylindrical panels and shells with local, inter-ring, and general buckling modal imperfections, Computers & Structures 59(3): 489-527.
[5] Léné F., Duvaut G., Mailhé M.O., Chaabane S.B., Grihon S., 2009, An advanced methodology for optimum design of a composite stiffened cylinder, Composite Structure 91: 392-397.
[6] Simitsess G.J., Sheinman I., 1978, Optimization of geometrically imperfect stiffened cylindrical shells under axial compression, Computers & Structures 59(9): 377-381.
[7] Irisarri F.X., Laurin F., Leroy F.H., Maire J.F., 2011, Computational strategy for multiobjective optimization of composite stiffened panels, Composite Structure 93: 1158-1167.
[8] Rao S.S., Reddy E.S., 1981, Optimum design of stiffened conical shells with natural frequency constraints, Computers & Structures 14(1-2): 103-110.
[9] Colson B., Bruyneel M., Grihon S., Raick C., Remouchamps A., 2010, Optimization methods for advanced design of aircraft panels: a comparison, Optimization and Engineering 11: 583-596.
[10] Ambur D.R., Jaunky N., 2001, Optimal design of grid-stiffened panels and shells with variable curvature, Composite Structure 52: 173-180.
[11] Luspa L., Ruocco E., 2008, Optimum topological design of simply supported composite stiffened panels via genetic algorithms, Computers & Structures 86: 1718-1737.
[12] Bagheri M., Jafari A.A., Sadeghifar M., 2011, Multi-objective optimization of ring stiffened cylindrical shells using a genetic algorithm, Journal of Sound and Vibration 330: 374-384.
[13] El Ansary A.M., El Damatty A.A., Nassef A.O., 2012, A coupled finite element genetic algorithm for optimum design of stiffened liquid-filled steel conical tanks, Thin-walled Structures 49(4): 482-493.
[14] Mehrabani M.M., Jafari A.A., Azadi M., 2012, Multidisciplinary optimization of a stiffened shell by genetic algorithm, Journal of Mechanical Science and Technology 26(2): 517-530.
[15] Marín L., Trias D., Badalló P., Rus G., Mayugo J.A., 2012, Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms, Composite Structure 94: 3321-3326.
[16] Lam K.Y., Hua L., 1997, Vibration analysis of a rotating truncated circular conical shell, International Journal of Solids and Structures 34(17): 2183-2197.
[17] Talebitooti M., Ghayour M., Ziaei-Rad S., Talebitooti R., 2010, Free vibrations of rotating composite conical shells with stringer and ring stiffeners, Archive of Applied Mechanics 80(3): 201-215.
[18] Baker E.H., Cappelly A.P., Lovalevsky L., Risb F.L., Verette R.M., 1968, Shell Analysis Manual, NASA CR-912, Washington D.C.