Coupled Bending-Longitudinal Vibration of Three Layer Sandwich Beam using Exact Dynamic Stiffness Matrix
Subject Areas : EngineeringA. Zare 1 , B Rafezy 2 , W.P Howson 3
1 - School of Engineering, Yasouj University, Yasouj, Iran
2 - Sahand University of Technology, Tabriz, Iran
3 - Independent Consultant, Gwanwyn, Craig Penlline, CF71 7RT, UK
Keywords:
Abstract :
[1] Kerwin E. M., 1959, Damping of flexural waves by a constrained viscoelastic layer, Journal of the Acoustical Society of America 31: 952-962.
[2] Mead D. J., 1962, The Double-Skin Damping Configuration, University of Southampton.
[3] DiTaranto R. A., 1965, Theory of vibratory bending for elastic and viscoelastic layered finite-length beams, Journal of Applied Mechanics 32: 881-886.
[4] Yin T. P., Kelly T. J., Barry J. E., 1967, A quantitative evaluation of constrained layer damping, Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry 89: 773-784.
[5] Mead D. J., Markus S., 1969, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, Journal of Sound and Vibration 10: 163-175.
[6] Rao D. K., 1978, Frequency and loss factors of sandwich beams under various boundary conditions, Journal of Mechanical Engineering Science 20: 271-282.
[7] Sakiyama T., Matsuda H., Morita C., 1996, Free vibration analysis of sandwich beam with elastic or viscoelastic core by applying the discrete Green function, Journal of Sound and Vibration 191: 189-206.
[8] Yu Y.Y., 1959, A new theory of elastic sandwich plate-one dimensional case, Journal of Applied Mechanics 26: 415-421.
[9] Rao Y. V. K. S., Nakra B. C., 1970, Influence of rotary and longitudinal translatory inertia on the vibrations of unsymmetrical sandwich beams, Proceeding of the 15th Conference I.S.T.A.M.
[10] Mead D. J., 1982, A comparison of some equations for the flexural vibration of damped sandwich beams, Journal of Sound and Vibration 83: 363-377.
[11] Chonan S., 1982, Vibration and stability of sandwich beams with elastic bonding, Journal of Sound and Vibration 85(4): 525-537.
[12] Mead D. J., Markus S., 1985, Coupled flexural, longitudinal and shear wave motion in two- and three-layered damped beams, Journal of Sound and Vibration 99(4): 501-519.
[13] Marur S. R., Kant T., 1996, Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling, Journal of Sound and Vibration 194: 337-351.
[14] Kameswara Rao M., Desai Y.M., Chitnis M. R., 2001, Free vibration of laminated beams using mixed theory, Composite Structures 52: 149-160.
[15] Silverman I. K., 1995, Natural frequencies of sandwich beams including shear and rotary effects, Journal of Sound and Vibration 183: 547-561.
[16] Fasana A., Marchesiello S., 2001, Rayleigh-Ritz analysis of sandwich beams, Journal of Sound and Vibration 241: 643-652.
[17] Amirani M. C., Khalili S. M. R., Nemati N., 2009, Free vibration analysis of sandwich beam with FG core using the element free Galerkin method, Composite Structures 90: 373-379.
[18] Hashemi S. M., Adique E. J., 2009, Free vibration analysis of sandwich beams: A dynamic finite element, International Journal of Vehicle Structures and Systems 1(4): 59-65.
[19] Hashemi S. M., Adique E. J., 2010, A quasi-exact dynamic finite element for free vibration analysis of sandwich beams, Applied Composite Materials 17(2): 259-269.
[20] Banerjee J. R., 2003, Free vibration of sandwich beams using the dynamic stiffness method, Computers and Structures 81: 1915-1922.
[21] Howson W. P., Zare A., 2005, Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams, Journal of Sound and Vibration 282: 753-767.
[22] Banerjee J. R., Sobey A.J., 2005, Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam, International Journal of Solids and Structures 42(8): 2181-2197.
[23] Banerjee J. R., Cheung C. W., Morishima R., Perera M., Njuguna J., 2007, Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment, International Journal of Solids and Structures 44: 7543-7563.
[24] Jun L., Xiaobin L., Hongxing H., 2009, Free vibration analysis of third-order shear deformable composite beams using dynamic stiffness method, Archive of Applied Mechanics 79: 1083-1098.
[25] Khalili S. M. R., Nemati N., Malekzadeh K., Damanpack A. R., 2010, Free vibration analysis of sandwich beams using improved dynamic stiffness method, Composite Structures 92: 387-394.
[26] Damanpack A. R., Khalili S. M. R., 2012, High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method, Composite Structures 94: 1503-1514.
[27] Wittrick W. H., Williams F. W., 1971, A general algorithm for computing natural frequencies of elastic structures, Quarterly Journal of Mechanics and Applied Mathematics 24: 263-284.
[28] Howson W. P., Williams F. W., 1973, Natural frequencies of frames with axially loaded Timoshenko members, Journal of Sound and Vibration 26: 503-515.
[29] Zare A., 2004, Exact Vibrational Analysis of Prismatic Plate and Sandwich Structures, Ph.D. Thesis, Cardiff University.
[30] Ahmed K. M., 1971, Free vibration of curved sandwich beams by the method of finite elements, Journal of Sound and Vibration 18: 61-74.
[31] Ahmed K. M., 1972, Dynamic analysis of sandwich beams, Journal of Sound and Vibration 10: 263-276.
[32] Sakiyama T., Matsuda H., Morita C., 1997, Free vibration analysis of sandwich arches with elastic or viscoelastic core and various kinds of axis-shape and boundary conditions, Journal of Sound and Vibration 203(3): 505-522.
[33] Bozhevolnaya E., Sun J. Q., 2004, Free vibration analysis of curved sandwich beams, Journal of Sandwich Structures & Materials 6(1): 47-73.
[34] Petrone F., Garesci F., Lacagnina M., Sinatra R., 1999, Dynamical joints influence of sandwich plates, Proceedings of the 3rd European Nonlinear Oscillations Conference, Copenhagen, Denmark.
[35] Marura S. R., Kant T., 2008, Free vibration of higher-order sandwich and composite arches, Part I: Formulation, Journal of Sound and Vibration 310: 91-109.