Lateral Vibrations of Single-Layered Graphene Sheets Using Doublet Mechanics
Subject Areas : Engineering
1 - Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] Granik V.T., 1997, Microstructural mechanics of granular media, Technique Report IM/MGU 78-241, Institute of Mechanics of Moscow State University, in Russian.
[2] Granik V.T., Ferrari M., 1993, Microstructural mechanics of granular media, Mechanics of Materials 15: 301-322.
[3] Ferrari M., Granik V.T., Imam A., Nadeau J., 1997, Advances in Doublet Mechanics, Springer, Berlin.
[4] Kojic M., Vlastelica I., Decuzzi P., Granik V.T., Ferrari M., 2011, A finite element formulation for the doublet mechanics modeling of microstructural materials, Computer Methods in Applied Mechanics and Engineering 200: 1446-1454.
[5] Xin J., Zhou L.X., Ru W.J., 2009, Ultrasound attenuation in biological tissue predicted by the modified doublet mechanics model, Chinese Physics Letters 26(7): 074301.1-074301.4.
[6] Ferrari M., 2000, Nanomechanics, and biomedical nanomechanics: Eshelby's inclusion and inhomogeneity problems at the discrete continuum interface, Biomedical Microdevices 2(4): 273-281.
[7] Gentile F., Sakamoto J., Righetti R., Decuzzi P., Ferrari M., 2011, A doublet mechanics model for the ultrasound characterization of malignant tissues, Journal of Biomedical Science and Engineering 4: 362-374.
[8] Lin S.S., Shen Y.C., 2005, Stress fields of a half-plane caused by moving loads-resolved using doublet mechanics, Soil Dynamics and Earthquake Engineering 25: 893-904.
[9] Sadd M.H., Dai Q., 2005, A comparison of micro-mechanical modeling of asphalt materials using finite elements and doublet mechanics, Mechanics of Materials 37: 641-662.
[10] Fang J.Y., Jue Z., Jing F., Ferrari M., 2004, Dispersion analysis of wave propagation in cubic-Tetrahedral assembly by doublet mechanics, Chinese Physics Letters 21(8): 1562-1565.
[11] Sadd M. H., 2005, Elasticity Theory Applications, and Numeric, Elsevier Butterworth-Heinemann, Burlington.
[12] Eringen A.C., 1972, Nonlocal Polar Elastic Continua, International Journal of Engineering Science 10: l-16.
[13] Iijima S., 1991, Helical microtubes of graphitic carbon, Nature 354: 56-58.
[14] Katsnelsona M.I., Novoselov K.S., 2007, Graphene: New bridge between condensed matter physics and quantum electrodynamics, Solid State Communications 143: 3-13.
[15] Heersche H.B., Herrero P.J., Oostinga J.B., Vandersypen L.M.K., Morpurgo A.F., 2007, Induced superconductivity in graphene, Solid State Communications 143: 72-76.
[16] Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S., 2007, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45: 1558-1565.
[17] Danesh M., Farajpour A., Mohammadi M., 2012, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications 39: 23-27.
[18] Wang Q, C Wang M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology 18: 075702.1-075702.4.
[19] Ghannadpour S.A.M., Mohammadi B., Fazilati J., 2013, Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method, Composite Structures 96: 584-589.
[20] Malekzadeh P., Mohebpour S. R., Heydarpour Y., 2012, Nonlocal effect on the free vibration of short nanotubes embedded in an elastic medium, Acta Mechanica 223: 1341-1350.
[21] Stankovich S., Piner R.D, Nguyen S.T., Ruoff R.S., 2006, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon 44: 3342-3347.
[22] Wang J., Tian M., He X., Tang Z., 2014, Free vibration analysis of single-layered graphene sheets based on a continuum model, Applied Physics Frontier 2(1): 1-7.
[23] Rao S.S., 2007, Vibration of Continuous Systems, John Wiley and Sons, New Jersey.
[24] Green A.E., Zerna W., 1992, Theoretical Elasticity, Dover publications, New York.
[25] Reddy J.N., 2010, Non-local nonlinear formulations for bending of classical and shear deformation theories of beams and plates International Journal of Engineering Science 48(11): 1507-1518.
[26] Aghababaei R., Reddy J.N., 2009, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration 326(1-2): 277-289.
[27] Farajpour A., Mohammadi M., Shahidi A.R., Mahzoon M., 2011, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures 43(10): 1820-1825.
[28] Pradhan S.C., Phadikar J. K., 2009, Nonlocal elasticity theory for vibration of nanoplates, Journal of Sound and Vibration 325: 206-223.
[29] Alibeigloo A., 2011, Free vibration analysis of nano-plate using three-dimensional theory of elasticity, Acta Mechanica 222: 149-159.
[30] Aksencer T., Aydogdu M., 2011, Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory, Physica E 43: 954-959.
[31] Ansari R., Sahmani S., Arash B., 2010, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A 375: 53-62.
[32] Jalali S.K., Rastgoo A., Eshraghi I., 2011, Large amplitude vibration of imperfect shear deformable nano-plates using non-local theory, Journal of Solid Mechanics 3(1): 64-73.
[33] Rouhi S., Ansari R., 2012, Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets, Physica E 44: 764-772.
[34] Aksencer T., Aydogdu M., 2012, Forced transverse vibration of nanoplates using nonlocal elasticity, Physica E 44: 1752-1759.
[35] Daneshmand F., Rafiei M., Mohebpour S.R., Heshmati M., 2013, Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory, Applied Mathematical Modelling 37: 7983-8003.
[36] Bouyge F., Jasiuk I., Boccara S., Ostoja-Starzewski M., 2002, A micromechanically based couple-stress model of an elastic orthotropic two-phase composite, European Journal of Mechanics A/Solids 21: 465-481.
[37] Bandow S., Asaka S., Saito Y., Rao A., Grigorian L., Richter E., Eklund P., 1998, Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes, Physical Review Letters 80(17): 3779-3782.