A New Method for Allocating Fixed Costs with Undesirable Data: Data Envelopment Analysis Approach
Subject Areas : Financial MathematicsMohhamad Reza Mozafari 1 , Marzieh Ghasemi 2 , Farhad Hosseinzadeh Lotfi 3 , Mohsen Rostamy-Malkhalifeh 4 , Mohammad Hasan Behzadi 5
1 - Department of Mathematics, Shiraz University Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Mathematics, Science and Research Branch, Islamic Azad University,Tehran, Iran
4 - Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] Charnes, A., Cooper, W. W., E. Rhodes, E., Measuring the efficiency of decision making units, European Journal of Operational Research, 1978, 2, P. 429-444, Doi: 10.1016/0377-2217(78)90138-8.
[2] Banker, R. D., Charnes, A., Cooper, W. W., Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, Management Science, 1984, 30, P. 1078-1092, Doi: 10.1287/mnsc.30.9.1078.
[3] Allen, R., Athanassopoulos, A., Dyson, R. G., Thanassoulis, E., Weights restrictions and value judgements in data envelopment analysis: evolution, development and future directions, Annals of operations research, 1997, 73, P. 13-34, Doi: 10.1023/A:1018968909638.
[4] Charnes, A., Cooper, W. W., Preface to topics in data envelopment analysis, Annals of Operations research, 1984, 2, P. 59-94, Doi: 10.1007/BF01874733.
[5] Charnes, A., Clark, C. T., Cooper, W. W., Golany, B., A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces, Annals of Operations Research, 1984, 2, P. 95-112, Doi: 10.1007/BF01874734.
[6] Thrall, R. M., Duality, classification and slacks in DEA, Annals of Operations Research,1996, 66, P. 109-138, Doi: 10.1007/BF02187297.
[7] Lin, W. B., Meng, W., Li, X. X., Zhang, D. Q., DEA models with undesirable inputs and outputs, Annals of Operations Research, 2010, 173, P. 177-194, Doi: 10.1007/s10479-009-0587-3.
[8] Izadikhah, M., Farzipoor Saen, R., Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors, Computers and Operations Research, 2018, 100, P. 343-367, Doi: 10.1016/j.cor.2017.10.002.
[9] Shi, X., Emrouznejad, A., Yu, W., Overall efficiency of operational process with undesirable outputs containing both series and parallel processes: A SBM network DEA model, Expert Systems with Applications, 2021, 178, Doi: 10.1016/j.eswa.2021.115062.
[10] Eyni, M., Tohidi, G., Mehrabeian, S., Applying inverse DEA and cone constraint to sensitivity analysis of DMUs with undesirable inputs and outputs, Journal of the Operational Research Society,2017, 68, P. 34-40.
Doi: 10.1057/s41274-016-0004-7.
[11] Wu, J., Xia, P., Zhu, Q., Chu, J., Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output, Annals of operations research, 2019, 275, P. 731–749. Doi: 10.1007/s10479-018-2958-0.
[12] Zhao, P., Zeng, L., Li, P., Lu, H., Hu, H., Li, C., Zheng, M., Li, H., Yu, Z., Yuan, D., Xie, J., Huang, Q., Qi, Y., China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model, Energy, 2022, 238.
[13] Cook, W. D., Kress, M., Characterizing an equitable allocation of shared costs: A DEA approach, European Journal of Operational Research, 1999, 119, P. 652-661, Doi: 10.1016/S0377-2217(98)00337-3.
[14] Jahanshahloo, G. R., Hosseinzadeh Lotfi, F., Shoja, N., Sanei, M., An alternative approach for equitable allocation of shared costs by using DEA, Applied Mathematics and Computation, 2004, 153, P. 267-274.
[15] Cook, W. D., Zhu, J., Allocation of shared costs among decision making units: a DEA approach, Computers & Operations Research, 2005, 32, P. 2171-2178. Doi: 10.1016/j.cor.2004.02.007.
[16] Lin, R., Allocating fixed costs or resources and setting targets via data envelopment analysis, Applied Mathematics and Computation, 2011, 217, P. 6349-6358, Doi: 10.1016/j.amc.2011.01.008.
[17] Ghasemi, M., Mozaffari, M. R., Hosseinzadeh Lotfi, F., Rostamy-malkhalifeh, M., Behzadi, M. H., New Approach in Fixed Resource Allocation and Target Setting Using Data Envelopment Analysis with Common Set of Weights, Complexity, 2022, 2022, P. 1-11. Doi: 10.1155/2022/2149093.
[18] Si, X., Liang, L., Jia, G., Yang, L., Wu, H., Li, Y., Proportional sharing and DEA in allocating the fixed cost, Applied Mathematics and Computation, 2013, 219, P. 6580-6590, Doi: 10.1016/j.amc.2012.12.085.
[19] Du, J., Cook, W. D., Liang, L., Zhu, J., Fixed cost and resource allocation based on DEA cross-efficiency, European Journal of Operational Research, 2014, 235, P. 206-214, Doi: 10.1016/j.ejor.2013.10.002.
[20] Sharafi, H., Lotfi, F. H., Jahanshahloo, G. R., Razipour-GhalehJough, S., Fair Allocation Fixed Cost Using Cross-Efficiency Based on Pareto Concept, Asia-Pacific Journal of Operational Research, 2020, 37, P. 1-23, Doi:10.1142/S0217595919500362.
[21] Beasley, J. E., Allocating fixed costs and resources via data envelopment analysis, European Journal of Operational Research, 2003, 147, P. 198-216, Doi: 10.1016/S0377-2217(02)00244-8.
[22] Jahanshahloo, G. R, Sadeghi, J., Khodabakhshi, M., proposing a method for fixed cost allocation using DEA based on the efficiency invariance and common set of weights principles, Math Meth Oper Res, 2017, 85, P. 4982-4997, Doi: 10.1007/s00186-016-0563-z.
[23] Li, F., Song, J., Dolgui, A., Liang, L., Using common weights and efficiency invariance principles for resource allocation and target setting, International Journal of Production Research, 2017, 55, P. 4982-4997.
Doi: 10.1080/00207543.2017.1287450.
[24] An, Q., Wang, P., Yang, H., Wang, Z., Fixed cost allocation in two-stage system using DEA from a noncooperative view, OR Spectrum, 2021, 43, P. 1077-1102, Doi: 10.1007/s00291-021-00643-y.
[25] Li, F., Zhu, Q., Liang, L., Allocating a fixed cost based on a DEA-game cross efficiency approach, Expert Systems with Applications, 2018, 96, P. 196-207, Doi: 10.1016/j.eswa.2017.12.002.
[26] An, Q., Wang, P., Emrouznejad, A., Hu, J., Fixed cost allocation based on the principle of efficiency invariance in two-stage systems, European Journal of Operational Research, 2020, 283, P. 662-675, Doi:10.1016/j.ejor.2019.11.031.
[27] Li, F., Wang, Y., Emrouznejad, A., Zhu, Q., Kou, G., Allocating a fixed cost across decision-making units with undesirable outputs: A bargaining game approach, Journal of the Operational Research Society, 2021, P.1-17, Doi: 10.1080/01605682.2021.1981781.
[28] Lotfi, F. H., Rostamy-Malkhalifeh, M., Mozaffari, M. H., Behzadi, M. H., Ghasemi, M., Fair allocation of fixed costs in data envelopment analysis, Advances in Intelligent Systems and Computing, 2020, 1301, P. 399–405, Doi: 10.1007/978-3-030-66501-2_32.
[29] Li, Y., Yang, M., Chen, Y., Dai, Q., Liang, L., Allocating a fixed cost based on data envelopment analysis and satisfaction degree, Omega, 2013, 41, P. 55-60. Doi: 10.1016/j.omega.2011.02.008.
[30] Chu, J., Jiang, H., Fixed cost allocation based on the utility: A DEA common-weight Approach. IEEE Access, 2013,7, P. 72613-72621. Doi: 10.1109/ACCESS.2019.2919645.
[31] Khodabakhshi, M., Aryavash, K., The fair allocation of common fixed cost or revenue using DEA concept, Annals of Operations Research, 2014, 214, P. 187-194. Doi: 10.1007/s10479-012-1117-2.
[32] Charnes, A., Cooper. W. W., Programming with linear fractional functionals, Naval Research logistics quarterly, 1962, 9, P. 181-186. Doi:10.1002/nav.3800090303.