An anticipating class of Fuzzy Stochastic Differential Equations
Subject Areas : Numerical Methods in Mathematical FinanceHossein Jafari 1 , Hamed Farahani 2 , Mahmoud Paripour 3
1 - Department of Mathematics, Chabahar Maritime University, Iran
2 - Department of Mathematics, Chabahar Maritime University, Iran.
3 - Hamedan University Of Technology, Hamedan, 65169-13418, Iran.
Keywords:
Abstract :
[1] Allen, E., Modeling with Itô Stochastic Differential Equations, Springer. 2007.
[2] Bakhshmohammadlou, M., Farnoosh, R., Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function, Advances in Mathematical Finance & Applications, 2020, 5(2), P. 247-259.
Doi: 10.22034/amfa.2020.1873599.126.
[3] Black, F., Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81, P.637-659. Doi:10.1086/260062.
[4] Buckdahn, R., Nualart, D., Linear stochastic differential equations and Wick product, Prob,Theory Rel. Fields, 1994, 99, P.501-525. Doi:10.1007/BF01206230.
[5] Colubi, A., Dominguez-Menchero, J.S., Lopez-Diaz, M., Ralescu, D.A., A representation of random upper semi continuous functions, Proc. Amer. Math. Soc., 2002, 130, P.3237-3242.
Doi:10.1090/S0002-9939-02-06429-8.
[6] Fei, W.Y., Existence and uniqueness for solutions to fuzzy stochastic differential equations driven by local martingales under the non-Lipschitzian condition, Nonlinear Anal. TMA., 2013, 76, P.202-214. Doi:10.1016/j.na.2012.08.015.
[7] Fei, W.Y., Liu, H., Zhang, W., On solutions to fuzzy stochastic differential equations with local martingales, Systems and Control Letters, 2014, 65, P.96-105. Doi:10.1016/j.sysconle.2013.12.009.
[8] Jafari, H., Malinowski, M. T., Ebadi, M. J., Fuzzy stochastic differential equations driven by fractional Brownian motion, Advances in Difference Equations, 2021,1, P.1-17. Doi: 10.1186/s13662-020-03181-z.
[9] Jafari, H., Paripour, M., Farahani, H., Fuzzy Malliavin derivative and linear Skorohod fuzzy stochastic differential equation, Journal of Intelligent & Fuzzy Systems, 2018, 35(2), P.2447-2458. Doi: 10.3233/JIFS-18043.
[10] Kim, J.H., On fuzzy stochastic differential equations, J. Korean Math. Soc., 2005, 42, P.153-169. Doi:10.4134/JKMS.2005.42.1.153.
[11] Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, 1991.
[12] Lakshmikantham, V., Mohapatra, R.N., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis, London, 2003.
[13] Malinowski, M.T, Stochastic fuzzy differential equations with an application, Kybernetika, 2011, 47, P.123-143. Doi:10.1016/j.mcm.2011.09.018.
[14] Malinowski, M.T., Random fuzzy differential equations under generalized Lipschitz condition, Nonlinear Analysis: Real World Applications, 2012, 13(2), P.860-881. Doi:10.1016/j.nonrwa.2011.08.022.
[15] Malinowski, M.T., Strong solutions to stochastic fuzzy differential equations of Itô type, Math. Comput. Modell, 2012, 55, P.918-928. Doi:10.1016/j.mcm.2011.09.018.
[16] Malinowski, M.T., Itô type stochastic fuzzy differential equations with delay, Syst. Control Lett., 2012, 61, P.692-701. Doi:10.1016/j.sysconle.2012.02.012.
[17] Malinowski, M.T., Some properties of strong solutions to stochastic fuzzy differential equations, Information Sciences, 2013, 252, P. 62-80. Doi: 10.1016/j.ins.2013.02.053.
[18] Malinowski, M. T., Symmetric fuzzy stochastic differential equations with generalized global lipschitz condition. Symmetry, 2020, 12(5), P.819. Doi: 10.3390/sym12050819.
[19] Malinowski, M.T., Michta, M., Sobolewska, J., Set-valued and fuzzy stochastic differential equations driven by semimartingales, Nonlinear Analysis: Theory, Methods and Applications, 2013, 79, P.204-220.
[20] Michta, M., Fuzzy Stochastic Differential Equations Driven by Semimartingales-Different Approaches, Mathematical Problems in Engineering, 2015, P. 1-9. Doi:10.1155/2015/794607.
[21] Mashayekhi, S., Alternating Direction Explicit Method for a Nonlinear Model in Finance, Advances in Mathematical Finance and Applications, 2021, 6(4), P.745-755. Doi: 10.22034/AMFA.2021.1918952.1540.
[22] Nualart, D.,The Malliavin Calculus and Related Topics, Second Edition, Springer, 2006.
[23] Puri, M.L., Ralescu, D.A., Fuzzy random variables, J. Math. Anal. Appl.,1986, 114, P.409-422. Doi:10.1016/B978-1-4832-1450-4.50029-8.
[24] Qiu, D., Zhang, W., Lu, C., On fuzzy differential equations in the quotient space of fuzzy numbers, Fuzzy Sets and Systems, 2016, 295, P.72-98. Doi: 10.1016/j.fss.2015.03.010.
[25] Sanz-SolÃ, M., Malliavin calculus with applications to stochastic partial differential equations, EPFL press, 2005.
[26] Tudor, C.A., Itô-Skorohod stochastic equations and applications to finance, Journal of Applied Mathematics and Stochastic Analysis, 2004, 4, P.359-369. Doi:10.1016/j.fss.2015.03.010.
[27] Tudor, C.A., Martingale-type stochastic calculus for anticipating integral processes, Bernoulli, 2004, 10(2), P.313-325. Projecteuclid.org/download/pdf_1/euclid.bj/1082380221.
[28] Zanjirdar, M. Overview of Portfolio Optimization Models. Advances in Mathematical Finance and Applications, 2020, 5(4), P. 419-435. Doi: 10.22034/amfa.2020.674941
[29] Izadikhah, M. DEA Approaches for Financial Evaluation - A Literature Review, Advances in Mathematical Finance and Applications, 2022, 7(1), P. 1-36, Doi: 10.22034/amfa.2021.1942092.1639
[30] Zanjirdar, M., Kasbi, P., Madahi, Z., Investigating the effect of adjusted DuPont ratio and its components
on investor & quot; s decisions in short and long term, Management Science Letters, 2014, 4(3), P.591-596.
Doi: 10.5267/j.msl.2014.1.003