On Solutions of Generalized Implicit Equilibrium Problems with Application in Game Theory
Subject Areas : Financial MathematicsParastoo Zangenehmehr 1 , Ali Farajzadeh 2
1 - Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
2 - Department of Mathematics, Razi University, Kermanshah, 67149, Iran.
Keywords:
Abstract :
References
[1] Ansari, Q.H., Oettli, W., and Schlager, D., A generalization of vector equilibria, Mathematical Methods of Operations Research, 1997, 46, P.147–152.
[2] Barbagallo, A., and Mauro, P., An inverse problem for the dynamic oligopolistic market equilibrium problem in presence of excesses, Procedia - Social and Behavioral Sciences, 2014, 108, P. 270 – 284.
Doi: 10.1016/j.sbspro.2013.12.837.
[3] Blum, E., and Oettli,W., From optimization and variational inequalities to equilibrium problems, The Mathematics Student, 1994, 63, P.123–145.
[4] Eshaghi Gordji, M., and Askari, Gh., Hyper-Rational Choice and Economic Behaviour, Advances in mathematical finance and applications, 2018, 3(3), P. 69-76, Doi:10.22034/amfa.2018.544950.
[5] Fan, K., Some properties of convex sets related to fixed point theorems, Math. Ann 1984, 266, P.519–537.
[6] Hadjisavvas, N., and Schaible, S., From scalar to vector equilibrium problems in the quasimonotone case, J. Optim. Theory Appl, 1998, 96(2), P.297–309.
[7] Halimia,S.M., and Farajzadeh, A.P., On Vector Equilibrium Problem with Generalized Pseudomonotonicity, Advances in mathematical finance & applications, 2019, 4(2), P. 65-74, Doi: 10.22034/amfa.2019.583570.1170.
[8] Huang, N.J., Li, J., and Thompson, H.B., Implicit vector equilibrium problems with applications, Math. Comput. Model, 2003, 37, P.1343–1356, Doi:10.1016/S0895-7177(03)90045-8.
[9] Karamian, A., and Lashkaripour, R., Existence of Solutions for a New Version of Generalized Operator Equilibrium Problems, Filomat, 2018, 32(13), P. 1-10.
[10] Lohawech, P., Kaewcharoen, A., and Farajzadeh, A., Algorithms for the common solution of the split variational inequality problems and fixed point problems with applications, Journal of inequalities and applications, 2018, 358(1), P.1-17, Doi:10.1186/s13660-018-1942-1.
[11] Mohammaddoost, A., Falah Shams, M. F., Eshaghi Gordji, M., and Ebadiand, A., Evaluating the Factors Affecting on Credit Ratings of Accepted Corporates in Tehran Securities Exchange by Using Factor Analysis and AHP, Advances in Mathematical Finance and Applications, 2021, 6(1), P.161-177. Doi:10.22034/AMFA.2020.1899553.1421.
[12] Munkong, J., Ungchittrakoola, K., and Farajzadeh, A., An inertial extragradient subgradient method for solving bilevel equilibrium problems, Journal of Computational Analysis and Applications, 2021, 29(5), P.995-1010.
[13] Noor, M.A., and Oettli, W., On generalized nonlinear complementarity problems and quasi equilibria, Matematiche, 1994, 49, P.313–331.
[14] Noor, M.A., and Oettli, W., On general nonlinear complementary problems and quasi-equilibria, Le Mathematiche, 1991, 49(2), P.281–286.
[15] Promsinchai, P., Farajzadeh, A., and Petrot, N., Stochastic Heavy-Ball Method for Constrained Stochastic Optimization Problems, Acta Mathematica Vietnamica, 2020, 45, P.501–514.
[16] Rama, T., Khanna, A. K., On Generalized Implicit Operator Equilibrium Problems, Filomat, 2019, 33(12), P.3823–3831, Doi:10.2298/FIL1912823R.
[17] Schmidt, Ch., Game theory and economic analysis, 2002 , Taylor.
[18] Song, W., On generalized vector equilibrium problems, J. Compu. Appl. Math, 2002, 146, P.167- 177, Doi:10.1016/S0377-0427(02)00426-0.
[19] Tan, N.X., Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Math. Nachr, 1985, 122, P.231–245.
[20] Yuan, X.Z., KKM Theory and Applications in Nonlinear Analysis, 1999, Dekker, New York.
[21] Zangenehmehr, P., Farajzadeh, A.P., Vaezpour, S.M., On fixed point theory for generalized contractions in cone metric spaces via scalarizing, Chiang Mai Journal of Science, 2015, 42 (4), P.1038-1043.