Analyzing the performance of DEA models for bankruptcy prediction in the energy sector: with emphasis on Dynamic DEA approach
Subject Areas : Risk ManagementMohammad Ali Khorami 1 , Seyed Babak Ebrahimi 2 , Majid Mirzaee Ghazani 3
1 - Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 - Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
3 - Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
Keywords:
Abstract :
[1] Olson, D.L., Delen, D., and Meng, Y., Comparative analysis of data mining methods for bankruptcy prediction, Decision Support Systems, 2012, 52(2), P. 464-473. Doi: 10.1016/j.dss.2011.10.007
[2] Bernstein, P.L., The new religion of risk management. Harvard business review, 1996, 74(2), P. 47.
[3] Aven, T., On some recent definitions and analysis frameworks for risk, vulnerability, and resilience. Risk Analysis: An International Journal, 2011, 31(4), P. 515-522. Doi: 10.1111/j.1539-6924.2010.01528.x
[4] Šotić, A. and R. Rajić, The review of the definition of risk, Online Journal of Applied Knowledge Management, 2015, 3(3), P. 17-26.
[5] Lowrance, W.W., Of accepTable risk: Science and the determination of safety, 1976, Doi: 10.1149/1.2132690
[6] Fetisovová, E., Nagy, L., and Vlachynsky, K., Aktuálne trendy vo financiách malých a stredných podnikov. 2014, Bratislava, Slovak Republic: Vydavateľstvo EKONÓM.
[7] Campbell, S., Determining overall risk. Journal of risk research, 2005, 8(7-8), P.569-581.
Doi: 10.1080/13669870500118329
[8] Horváthová, J., Mokrišová, M., Risk of bankruptcy, its determinants and models. Risks, 2018, 6(4), P. 117, Doi: 10.3390/risks6040117
[9] Agustia, D., Muhammad, N.P.A., and Permatasari, Y., Earnings management, business strategy, and bankruptcy risk: evidence from Indonesia. Heliyon, 2020, 6(2), P. e03317. Doi: 10.1016/j.heliyon.2020.e03317
[10] Campbell, J.Y., Hilscher, J., and Szilagyi, J., In search of distress risk. The Journal of Finance, 2008, 63(6), P. 2899-2939. Doi: 10.1111/j.1540-6261.2008.01416.x
[11] Sánchez, C.P., de Llano Monelos, P., and López, M.R., A parsimonious model to forecast financial distress, based on audit evidence, Contaduría y Administración, 2013, 58(4), P.151-173. Doi:10.1016/S0186-1042(13)71237-3
[12] KORDESTANI, G., TATLI, R., and KOSARI, F.H., The evaluate ability of altman adjusted model to prediction stages of financial distress newton and bankruptcy, 2014.
[13] Altman, E.I., and Hotchkiss, E., Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt, 2010, 289, John Wiley & Sons. Doi: 10.1002/9781118267806
[14] rostami, m.r., fallahshams, m., eskandari, f., The assessment of financial distress in Tehran stock exchange: a comparative study between data envelopment analysis (DEA) and logistic regression (LR), 2011.
[15] Winakor, A., Smith, S., A Test Analysis of Unsuccessful Industrial Companies, Bulletn, nr 31, University of Illinois, za: Korol T., 2013. Nowe podejście do analizy wskaźnikowej w przedsiębiorstwie, 1930.
[16] Fitzpatrick, P.J., A comparison of the ratios of successful industrial enterprises with those of failed companies. 1932.
[17] Merwin, C.L., Financing small corporations in five manufacturing industries, 1926-1936. 1942, National Bureau of Economic Research, New York.
[18] Beaver, W.H., Financial ratios as predictors of failure. Journal of accounting research, 1966, P. 71-111. Doi: 10.2307/2490171
[19] Altman, E.I., Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 1968, 23(4), P. 589-609. Doi: 10.1111/j.1540-6261.1968.tb00843.x
[20] Izadikhah, M. Financial Assessment of Banks and Financial Institutes in Stock Exchange by Means of an Enhanced Two stage DEA Model. Advances in Mathematical Finance and Applications, 2021, 6(2), P. 207-232. Doi: 10.22034/amfa.2020.1910507.1491
[21] Ohlson, J.A., Financial ratios and the probabilistic prediction of bankruptcy, Journal of accounting research, 1980, P. 109-131. Doi: 10.2307/2490395
[22] West, R.C., A factor-analytic approach to bank condition. Journal of Banking & Finance, 1985, 9(2), P. 253-266. Doi: 10.1016/0378-4266(85)90021-4
[23] Atiya, A.F., Bankruptcy prediction for credit risk using neural networks: A survey and new results, IEEE Transactions on neural networks, 2001, 12(4), P. 929-935. Doi: 10.1109/72.935101
[24] Rezaei, N., Javaheri, M., The Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis, Advances in Mathematical Finance and Applications, 2020, 5(2), P.183-196.
Doi: 10.22034/amfa.2019.1863963.1195
[25] Min, J.H., Lee, Y.-C., Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert systems with applications, 2005. 28(4), P. 603-614. Doi: 10.1016/j.eswa.2004.12.008
[26] Jebelli, N., Dadashi, I., and Zare Bahnamiri, M. J., Presenting a New Bankruptcy Prediction Model Based on Adjusted Financial Ratios According to the General Price Index, Advances in Mathematical Finance and Applications, 2021, 6(4), P. 717-732. Doi: 10.22034/AMFA.2020.1884838.1339
[27] Stefko, R., Gavurova, B., Kocisova, K., Healthcare efficiency assessment using DEA analysis in the Slovak Republic, Health economics review, 2018, 8(1), P. 1-12. Doi: 10.1186/s13561-018-0191-9
[28] Lukason, O., Camacho-Miñano, M.-d.-M., Bankruptcy risk, its financial determinants and reporting delays: do managers have anything to hide? Risks, 2019, 7(3), P.77. Doi: 10.3390/risks7030077
[29] Woods, M., Dowd, K.,and Humphrey, C., The value of risk reporting: a critical analysis of value-at-risk disclosures in the banking sector, International Journal of Financial Services Management, 2008, 3(1), P. 45-64. Doi: 10.1504/IJFSM.2008.016698
[30] Altman, E.I., et al., Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐score model, Journal of International Financial Management & Accounting, 2017, 28(2), P.131-171. Doi: 10.1111/jifm.12053
[31] Aziz, M.A., Dar, H.A., Predicting corporate bankruptcy: where we stand? Corporate Governance: The international journal of business in society, 2006.
[32] Bărbuță-Mișu, N., and Madaleno, M., Assessment of bankruptcy risk of large companies: European countries evolution analysis, Journal of Risk and Financial Management, 2020, 13(3), P. 58. Doi: 10.3390/jrfm13030058
[33] Beaver, W.H., Alternative accounting measures as predictors of failure, The accounting review, 1968, 43(1), P.113-122.
[34] Horrigan, J.O., A short history of financial ratio analysis, The Accounting Review, 1968, 43(2), P. 284-294.
[35] Mohammadzadeh, A., and Noferesti, M., The Application of Altman & Springate Models In Bankruptcy Prediction of Accepted Companies In Tehran Stock Exchange, 2010.
[36] Altman, E.I., and H.J. Suggitt, Default rates in the syndicated bank loan market: A mortality analysis. Journal of Banking & Finance, 2000, 24(1-2), P. 229-253. Doi: 10.1016/S0378-4266(99)00058-8
[37] Altman, E.I., Haldeman, R.G., and Narayanan, P., ZETATM analysis A new model to identify bankruptcy risk of corporations. Journal of banking & finance, 1977, 1(1), P. 29-54. Doi: 10.1016/0378-4266(77)90017-6
[38] Zmijewski, M.E., Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting research, 1984, P. 59-82. Doi: 10.2307/2490859
[39] Frydman, H., E.I. Altman, and D.L. Kao, Introducing recursive partitioning for financial classification: the case of financial distress. The journal of finance, 1985, 40(1), P. 269-291.
Doi: 10.1111/j.1540-6261.1985.tb04949.x
[40] Chen, M.-Y., Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers & Mathematics with Applications, 2011, 62(12), P. 4514-4524. Doi: 10.1016/j.camwa.2011.10.030
[41] Odom, M.D., Sharda, R., A neural network model for bankruptcy prediction. in 1990 IJCNN International Joint Conference on neural networks, 1990, IEEE. Doi: 10.1109/IJCNN.1990.137710
[42] Iturriaga, F.J.L., and Sanz, I.P., Bankruptcy visualization and prediction using neural networks: A study of US commercial banks, Expert Systems with applications, 2015, 42(6), P. 2857-2869.
[43] Son, H., et al., Data analytic approach for bankruptcy prediction, Expert Systems with Applications, 2019. 138, P. 112816. Doi: 10.1016/j.eswa.2019.07.033
[44] Balcerzak, A.P., et al., Non-parametric approach to measuring the efficiency of banking sectors in European Union Countries. Acta Polytechnica Hungarica, 2017, 14(7), P. 51-70.
[45] Mousavi, M.M., Ouenniche, J., and Xu, B., Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework, International Review of Financial Analysis, 2015, 42, P.64-75. Doi: 10.1016/j.irfa.2015.01.006
[46] Charnes, A., Cooper, W.W., Rhodes, E., Measuring the efficiency of decision making units, European journal of operational research, 1978, 2(6), P. 429-444. Doi: 10.1016/0377-2217(78)90138-8
[47] Izadikhah, M., Using goal programming method to solve DEA problems with value judgments, Yugoslav Journal of Operations Research, 2016, 24 (2), P: 1-16, doi: 10.2298/YJOR121221015I
[48] Kao, C., Dynamic data envelopment analysis: A relational analysis, European Journal of Operational Research, 2013, 227(2), P. 325-330. Doi: 10.1016/j.ejor.2012.12.012
[49] Moshabbaki, A., Mombeyni, H., Bakhshizadeh, A., Analysis of bankruptcy of companies listed in Stock Exchange by using of two methods of Discriminant Analysis and DEA–Additive analysis, Journal of Investment Knowledge, 2014, 4, P. 85-106.
[50] Li, Z., Crook, J., and Andreeva, G., Dynamic prediction of financial distress using Malmquist DEA, Expert Systems with Applications, 2017, 80, P. 94-106. Doi: 10.1016/j.eswa.2017.03.017.
[51] Štefko, R., Horváthová, J., Mokrišová, M., Bankruptcy prediction with the use of Data Envelopment Analysis: An empirical study of Slovak Businesses, Journal of Risk and Financial Management, 2020, 13(9), P. 212.
Doi: 10.3390/jrfm13090212.
[52] Setiawan, C., predicting financial distress using dea and altman’s model on steel and iron industry indonesia. jurnal manajemen dan bisnis sriwijaya, 2020, 18(1), P. 57-70.
[52] Rahimi, H., Minouei, M., Fathi, M., Financial distress of companies listed on the Tehran stock exchange using the dynamic worst practice frontier-based DEA model, Advances in Mathematical Finance and Applications, 2022, 7(2), P. 507-525. Doi: 10.22034/amfa.2021.1931684.1597
[53] Zamani, S., Zanjirdar, M., Lalbar, A. The effect of information disclosure on market reaction with meta-analysis approach. Advances in Mathematical Finance and Applications, 2022, 7(3), P. 629-644. Doi: 10.22034/amfa.2021.1937478.1625
[54] Zanjirdar, M., Overview of Portfolio Optimization Models. Advances in Mathematical Finance and Applications, 2020. 5(4), P.419-435. Doi: 10.22034/amfa.2020.674941.
[55] Emrouznejad, A., Yang, G.-l., A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016, Socio-economic planning sciences, 2018, 61, P. 4-8. Doi: 10.1016/j.seps.2017.01.008.
[56] Huang, Z., et al., The Empirical Study on the Film's Network Exposure Effectiveness based on Several DEA Models. in 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 2018. IEEE. Doi: 10.1109/IAEAC.2018.8577566.
[56] Razipour-GhalehJough, S., et al., Benchmarking bank branches: A dynamic DEA approach. Journal of Information and Optimization Sciences, 2021, P. 1-34. Doi: 10.1080/02522667.2020.1833441
[57] Mavi, R.K., and Mavi, N.K., National eco-innovation analysis with big data: A common-weights model for dynamic DEA, Technological Forecasting and Social Change, 2021, 162, P. 120369.
[58] Kao, C., and Hwang, S.-N., Efficiency measurement for network systems: IT impact on firm performance, Decision Support Systems, 2010, 48(3), P.437-446. Doi: 10.1016/j.dss.2009.06.002.
[59] Kao, C., Efficiency decomposition and aggregation in network data envelopment analysis, European Journal of Operational Research, 2016, 255(3), P. 778-786. Doi: 10.1016/j.ejor.2016.05.019.
[60] Lim, D.J., Kim, M.S., and Lee, K.W., A revised dynamic data envelopment analysis model with budget constraints, International Transactions in Operational Research, 2020. Doi: 10.1111/itor.12810.