A New Non-monotone Line Search Algorithm to Solve Non-smooth Optimization Finance Problem
Subject Areas : Numerical Methods in Mathematical FinanceSaeed Banimehri 1 , Hamid Esmaeili 2
1 - Department of Mathematics, Bu-Ali sina University, hamedan, Iran
2 - Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran
Keywords: Derivative-free optimization, Non-smooth optimization, Non-monotone Armijo line search, Diagonal discrete gradient bundle method,
Abstract :
In this paper, a new non-monotone line search is used in the diagonal discrete gradient bundle method to solve large-scale non-smooth optimization problems. Non-smooth optimization problems are encountered in many applications in fi-nance problems. The new principle causes the step in each iteration to be longer, which reduces the number of iterations, evaluations, and the computational time. In other words, the efficiency and performance of the method are improved. We prove that the diagonal discrete gradient bundle method converges with the pro-posed non-monotone line search principle for semi-smooth functions, which are not necessarily differentiable or convex. In addition, the numerical results confirm the efficiency of the proposed correction.
[1] Ahookhosh, M., Amini, K., Bahrami, S., A class of nonmonotone Armijo-type line search method for unconstrained optimization, Journal of Optimization Theory and Applications, 2012; 61(4): 387-404. doi: 10.1080/02331934.2011.641126
[2] Bagirov, A.M., Karasözen, B., Sezer, M., Discrete gradient method: derivative-free method for nonsmooth optimization, Journal of Optimization Theory and Applications, 2008; 137(2):317-334. doi: 10.1007/s10957-007-9335-5
[3] Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Introduction to Nonsmooth Optimization: theory, practice and software, Vol. 12. Springer, Switzerland, 2014.
[4] Barzilai, J., Borwein, J.M., Two-point step size gradient methods, IMA journal of numerical analysis, 1988; 8(1): 141-148. doi: 10.1093/imanum/8.1.141
[5] Dai, Y.H., Liao, L.Z., R‐linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis, 2002; 22(1):1-10. doi: 10.1093/imanum/22.1.1
[6] Dai, Y.H., On the nonmonotone line search, Journal of Optimization theory and Applications, 2002; 112(2): 315-330. doi: 10.1023/A:1013653923062
[7] Darabi, R., Baghban, M., Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis, Advances in mathematical finance & applications, 2018; 3(1):33-51. doi: 10.22034/amfa.2018.539133
[8] Grimaldi, R., Fibonacci and Catalan Numbers, John Wiley and Sons, 2012.
[9] Grippo, L., Lampariello, F., Lucidi, S., A class of nonmonotone stabilization methods in unconstrained optimization, Numerische Mathematik, 1991; 59(1): 779-801. doi: 10.1007/BF01385810
[10] Grippo, L., Lampariello, F., Lucidi, S., A nonmonotone line search technique for Newton’s method, SIAM Journal of Numerical Analysis, 1986; 23(4): 707-716. doi: 10.1137/0723046
[11] Griva, I., Nash, S.G., Sofar, A., Linear and nonlinear optimization, Vol. 108. SIAM, Philadelphia, 2009.
[12] Haarala, M., The Large-scale nonsmooth optimization: variable metric bundle method with limited memory, Academic Jyvaskyla, Jyvaskyla, 2004.
[13] Haarala, M., Miettinen, K., Makela, M.M., New limited memory bundle method for large-scale nonsmooth optimization, Optimization Methods and Software, 2004;19(6):673-692. doi: 10.1080/10556780410001689225
[14] Haarala, N., Miettinen, K., Makela, M.M., Globally convergent limited memory bundle method for large-scale nonsmooth optimization, Mathematical Programming, 2007; 109(1):181-205. doi: 10.1007/s10107-006-0728-2
[15] Karmitsa, N., Diagonal bundle method for nonsmooth sparse optimization, Journal of Optimization Theory and Applications, 2015; 166(3):886-905. doi: 10.1007/s10957-014-0666-8
[16] Karmitsa, N., Diagonal discrete gradient bundle method for derivative free nonsmooth optimization, Optimization, 2016; 65(8):1599-1614. doi: 10.1080/02331934.2016.1171865
[17] Lemarechal, C., Strodiot, J.J., Bihain, A., On a bundle algorithm for nonsmooth optimization, Nonlinear programming4; 1981: 245-282. doi: 10.1016/B978-0-12-468662-5.50015-X
[18] Mifflin, R., A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization, Nondifferential and variational techniques in optimization,1980; 77-90.doi: 10.1007/BFb0120960
[19] Rahmani, M., Khalili Eraqi, M., Nikoomaram, H., Portfolio Optimization by Means of Meta Heuristic Algorithms, Advances in mathematical finance & applications, 2019; 4(4):83-97. doi:10.22034/amfa.2019.579510.1144
[20] Raydan, M., On the Barzilai and Borwein choice of steplength for the gradient method, IMA Journal of Numerical Analysis, 1993; 13(3): 321-326. doi:10.1093/imanum/13.3.321
[21] Raydan, M., The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal on Optimization, 1997; 7(1):26-33. doi:10.1137/S1052623494266365
[22] Sun, W., Han, J., Sun, J., Global convergence of nonmonotone descent methods for unconstrained optimization problems, Journal of Computational and Applied Mathematics, 2002; 146(1):89-98. doi: 10.1016/S0377-0427(02)00420-X
[23] Vlcek, J., Lukšan, L., Globally convergent variable metric method for nonconvex nondifferentiable unconstrained minimization, Journal of Optimization Theory and Applications, 2001; 111(2):407-430. doi: 10.1023/A:1011990503369
[24] Zanjirdar, M., Overview of Portfolio Optimization Models, Advances in mathematical finance & applications, 2020; 5(4):419-435. doi:10.22034/amfa.2020.1897346.1407
[25] Zhang, H., Hager, W.W., A nonmonotone line search technique and its application to unconstrained optimization, SIAM journal on Optimization, 2004;14(4):1043-1056. doi: 10.1137/S1052623403428208
| Advances in Mathematical Finance & Applications www.amfa.iau-arak.ac.ir Print ISSN: 2538-5569 Online ISSN: 2645-4610 Doi: 10.22034/amfa.2023.1965376.1784 |
A New Non-Monotone Line Search Algorithm to Solve Non-Smooth Optimization Finance Problem
|
Saeed Banimehri, Hamid Esmaeili∗ |
Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran |
Article Info Article history: Received 2022-08-13 Accepted 2023-01-18
Keywords: Non-smooth optimization Derivative-free optimization Diagonal discrete gradient bundle method Non-monotone Armijo line search |
| Abstract |
In this paper, a new non-monotone line search is used in the diagonal discrete gradient bundle method to solve large-scale non-smooth optimization problems. Non-smooth optimization problems are encountered in many applications in finance problems. The new principle causes the step in each iteration to be longer, which reduces the number of iterations, evaluations, and the computational time. In other words, the efficiency and performance of the method are improved. We prove that the diagonal discrete gradient bundle method converges with the proposed non-monotone line search principle for semi-smooth functions, which are not necessarily differentiable or convex. In addition, the numerical results confirm the efficiency of the proposed correction. |
1 Introduction
In this paper, we are considering the non-smooth optimization problem of the form
| (1) |
| (2) |
| (3) |
| (4) |
| (5) |
| (6) |
| (7) |
| (8) |
| (9) |
| (10) |
| (11) |
| (12) |
| (13) |
| (14) |
| (15) |
| (16) |
| (17) |
| (18) |
| (19) |
Table 1: Summary of the Results with 50 Variables. |
| |
problem | Armijo line search nf / time | Modi nf / time |
1 | 3201 / 0.077 | 3008 / 0.066 |
2 | Fail | 10563 / 0.122 |
3 | 8132 / 0.513 | 7952 / 0.318 |
4 | 14189 / 0.302 | 14009 / 0.282 |
5 | 5400 / 0.268 | 4984 / 0.234 |
6 | 3345 / 0.09 | 3002 / 0.03 |
7 | 11471 / 0.18 | 10891 / 0.11 |
8 | 13356 / 0.11 | 12803 / 0.07 |
Table 2: Summary of the Results with 200 Variables. |
| |
problem | Armijo line search nf / time | Modi nf / time |
1 | 42815 / 1.168 | 41095 / 0.844 |
2 | Fail | 52364 / 2.690 |
3 | 44654 / 1.638 | 43031 / 1.375 |
4 | 113918 / 10.291 | 110523 / 1.001 |
5 | 41104 / 1.663 | 40980 / 1.532 |
6 | 279301 / 5.36 | 209147 / 4.13 |
7 | 58965 / 7.235 | 54178 / 6.137 |
8 | 51297 / 1.34 | 48354 / 0.98 |
Table 3: Summary of the Results with1000 Variables. |
| |
problem | Armijo line search nf / time | Modi nf / time |
1 | 1821133 / 47.864 | 1523451 / 42.796 |
2 | Fail | 902478 / 40426 |
3 | 1506899 / 81.411 | 1498568 / 76.298 |
4 | 2932844 / 39.886 | 2523569 / 38.416 |
5 | 129091 / 47.276 | 121957 / 46.289 |
6 | 176458 / 55.45 | 175142 / 30.25 |
7 | 203372 / 61.32 | 199354 / 45.37 |
8 | 5390563 / 59.45 | 5142 638 / 51.871 |
The results are summarized in Tables 1-3 where we have compared the efficiency of the conditions both in terms of the computational time and the number of function evaluations (nf, evaluations for short). The phrase Fail indicates that the method in question is not able to solve the problem. In problem 2, the old method is not able to solve the problem, but the modified method is able to solve the problem. In details, these results suggest that the proposed algorithm has promising behaviour encountering with medium-scale and large-scale unconstrained optimization problems and it is superior to the considered algorithm in all cases. Summarizing the results of tables. 1, 2 and 3 implies that modified diagonal discrete gradient bundle method is superior to the presented algorithm with respect to the number of iterations and function evaluations.
5 Conclusions
In this paper, we propose a new family of Armijo-type line search approach to calculate the step length in an unconstrained optimization problem that the objective function is non-smooth and non-convex. In the sense, we present a correction for the diagonal discrete gradient bundle method. In this modification, we focus on a new approach to new non-monotone line search. This rule produces a larger step size, especially when the repetition is far from optimal. We proved the global convergence of this method for semi-smooth functions that are not necessarily differentiable and convex. The numerical experiments confirm the efficiency of the proposed correction compared to the diagonal discrete gradient bundle method to solve large-scale non-smooth optimization problems.
References
[1] Ahookhosh, M., Amini, K., Bahrami, S., A class of nonmonotone Armijo-type line search method for unconstrained optimization, Journal of Optimization Theory and Applications, 2012; 61(4): 387-404. doi: 10.1080/02331934.2011.641126
[2] Bagirov, A.M., Karasözen, B., Sezer, M., Discrete gradient method: derivative-free method for nonsmooth optimization, Journal of Optimization Theory and Applications, 2008; 137(2):317-334. doi: 10.1007/s10957-007-9335-5
[3] Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Introduction to Nonsmooth Optimization: theory, practice and software, Vol. 12. Springer, Switzerland, 2014.
[4] Barzilai, J., Borwein, J.M., Two-point step size gradient methods, IMA journal of numerical analysis, 1988; 8(1): 141-148. doi: 10.1093/imanum/8.1.141
[5] Dai, Y.H., Liao, L.Z., R‐linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis, 2002; 22(1):1-10. doi: 10.1093/imanum/22.1.1
[6] Dai, Y.H., On the nonmonotone line search, Journal of Optimization theory and Applications, 2002; 112(2): 315-330. doi: 10.1023/A:1013653923062
[7] Darabi, R., Baghban, M., Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis, Advances in mathematical finance & applications, 2018; 3(1):33-51. doi: 10.22034/amfa.2018.539133
[8] Grimaldi, R., Fibonacci and Catalan Numbers, John Wiley and Sons, 2012.
[9] Grippo, L., Lampariello, F., Lucidi, S., A class of nonmonotone stabilization methods in unconstrained optimization, Numerische Mathematik, 1991; 59(1): 779-801. doi: 10.1007/BF01385810
[10] Grippo, L., Lampariello, F., Lucidi, S., A nonmonotone line search technique for Newton’s method, SIAM Journal of Numerical Analysis, 1986; 23(4): 707-716. doi: 10.1137/0723046
[11] Griva, I., Nash, S.G., Sofar, A., Linear and nonlinear optimization, Vol. 108. SIAM, Philadelphia, 2009.
[12] Haarala, M., The Large-scale nonsmooth optimization: variable metric bundle method with limited memory, Academic Jyvaskyla, Jyvaskyla, 2004.
[13] Haarala, M., Miettinen, K., Makela, M.M., New limited memory bundle method for large-scale nonsmooth optimization, Optimization Methods and Software, 2004;19(6):673-692. doi: 10.1080/10556780410001689225
[14] Haarala, N., Miettinen, K., Makela, M.M., Globally convergent limited memory bundle method for large-scale nonsmooth optimization, Mathematical Programming, 2007; 109(1):181-205. doi: 10.1007/s10107-006-0728-2
[15] Karmitsa, N., Diagonal bundle method for nonsmooth sparse optimization, Journal of Optimization Theory and Applications, 2015; 166(3):886-905. doi: 10.1007/s10957-014-0666-8
[16] Karmitsa, N., Diagonal discrete gradient bundle method for derivative free nonsmooth optimization, Optimization, 2016; 65(8):1599-1614. doi: 10.1080/02331934.2016.1171865
[17] Lemarechal, C., Strodiot, J.J., Bihain, A., On a bundle algorithm for nonsmooth optimization, Nonlinear programming4; 1981: 245-282. doi: 10.1016/B978-0-12-468662-5.50015-X
[18] Mifflin, R., A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization, Nondifferential and variational techniques in optimization,1980; 77-90.doi: 10.1007/BFb0120960
[19] Rahmani, M., Khalili Eraqi, M., Nikoomaram, H., Portfolio Optimization by Means of Meta Heuristic Algorithms, Advances in mathematical finance & applications, 2019; 4(4):83-97. doi:10.22034/amfa.2019.579510.1144
[20] Raydan, M., On the Barzilai and Borwein choice of steplength for the gradient method, IMA Journal of Numerical Analysis, 1993; 13(3): 321-326. doi:10.1093/imanum/13.3.321
[21] Raydan, M., The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal on Optimization, 1997; 7(1):26-33. doi:10.1137/S1052623494266365
[22] Sun, W., Han, J., Sun, J., Global convergence of nonmonotone descent methods for unconstrained optimization problems, Journal of Computational and Applied Mathematics, 2002; 146(1):89-98. doi: 10.1016/S0377-0427(02)00420-X
[23] Vlcek, J., Lukšan, L., Globally convergent variable metric method for nonconvex nondifferentiable unconstrained minimization, Journal of Optimization Theory and Applications, 2001; 111(2):407-430. doi: 10.1023/A:1011990503369
[24] Zanjirdar, M., Overview of Portfolio Optimization Models, Advances in mathematical finance & applications, 2020; 5(4):419-435. doi:10.22034/amfa.2020.1897346.1407
[25] Zhang, H., Hager, W.W., A nonmonotone line search technique and its application to unconstrained optimization, SIAM journal on Optimization, 2004;14(4):1043-1056. doi: 10.1137/S1052623403428208
E-mail address: esmaeili@basu.ac.ir |
|
© 2024. All rights reserved. Hosting by IA University of Arak Press |