Survey on the synthesis, mechanism and biological activities of monocyclic β-lactam compounds
Subject Areas : Polymers and Organic Structures
1 - Estahban higher education center, Shiraz University
Keywords: Staudinger, Biological activity, Synthesis, 2-Azetidinone,
Abstract :
Nitrogen-based heterocycles have a prominent position in medicinal chemistry, and more than 75% of drugs approved by the FDA are nitrogen-containing heterocycles. β-lactams are nitrogen-containing heterocyclic compounds and are known as the core of penicillin antibiotics. Since the discovery of the structure of penicillin, several strategies have been introduced for synthesis of this group of compounds. In this regard, extensive studies have been developed on the stereoselectivity of synthetic methods. In recent years, in order to obtain compounds with specific biological activities, many researchers have studied the synthesis and modification of β-lactam ring. In addition to antibacterial activity, this group of compounds has shown many other activities such as antifungal, anti-malarial, anti-inflammatory, anticancer, etc. In addition, they are also known as cholesterol absorption inhibitors and enzyme inhibitors. It is generally believed that the activity of this group of compounds is related to the chemical activity of the β-lactam ring and the substitutions on this ring. In this review article, different kinds of synthetic methods and biological activities of synthesized monobactams, especially in the last 10 years have been discussed.
1. P. D. Mehta, N. P. S. Sengar, and A. K. Pathak, Eur. J. Med. Chem. 45, 5541 (2010).
2. F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, and D. Häbich, Angew. Chemie Int. Ed. 45, 5072 (2006).
3. Q. Kong and Y. Yang, Bioorg. Med. Chem. Lett. 35, (2021).
4. H. F. Chambers and F. R. DeLeo, Nat. Rev. Microbiol. 7, 629 (2009).
5. E. Riazimontazer, R. Heiran, A. Jarrahpour, A. Gholami, Z. Hashemi, and A. Kazemi, ChemistrySelect 7, (2022).
6. M. Mohamadzadeh, M. Zarei, and M. Vessal, Bioorg. Chem. 95, 103515 (2020).
7. A. Jarrahpour, Z. Jowkar, Z. Haghighijoo, R. Heiran, J. A. Rad, V. Sinou, F. Rouvier, C. Latour, J. M. Brunel, and N. Özdemir, Med. Chem. Res. 31, 1026 (2022).
8. A. Jarrahpour, E. Ebrahimi, V. Sinou, C. Latour, and J. M. Brunel, Eur. J. Med. Chem. 87, 364 (2014).
9. W. Wang, P. Devasthale, D. Farrelly, L. Gu, T. Harrity, M. Cap, C. Chu, L. Kunselman, N. Morgan, R. Ponticiello, R. Zebo, L. Zhang, K. Locke, J. Lippy, K. O’Malley, V. Hosagrahara, L. Zhang, P. Kadiyala, C. Chang, J. Muckelbauer, A. M. Doweyko, R. Zahler, D. Ryono, N. Hariharan, and P. T. W. Cheng, Bioorg. Med. Chem. Lett. 18, 1939 (2008).
10. R. Heiran, S. Sepehri, A. Jarrahpour, C. Digiorgio, H. Douafer, J. M. Brunel, A. Gholami, E. Riazimontazer, and E. Turos, Bioorg. Chem. 102, 104091 (2020).
11. S. Ranjbari, M. Behzadi, S. Sepehri, M. Dadkhah Aseman, A. Jarrahpour, M. Mohkam, Y. Ghasemi, A. Reza Akbarizadeh, S. Kianpour, Z. Atioğlu, N. Özdemir, M. Akkurt, S. Masoud Nabavizadeh, and E. Turos, Bioorg. Med. Chem. 28, 115408 (2020).
12. E. M. Yimer, H. Z. Hishe, and K. B. Tuem, Front. Neurosci. 13, (2019).
13. N. G. Alves, I. Bártolo, A. J. S. Alves, D. Fontinha, D. Francisco, S. M. M. Lopes, M. I. L. Soares, C. J. V. Simões, M. Prudêncio, N. Taveira, and T. M. V. D. Pinho e Melo, Eur. J. Med. Chem. 219, 113439 (2021).
14. N. Arumugam, A. I. Almansour, R. S. Kumar, V. S. Krishna, D. Sriram, and R. Padmanaban, Arab. J. Chem. 14, (2021).
15. M. Mittal, R. K. Goel, G. Bhargava, and M. P. Mahajan, Bioorg. Med. Chem. Lett. 18, (2008).
16. N. Borazjani, M. Behzadi, M. Dadkhah Aseman, A. Jarrahpour, J. A. Rad, S. Kianpour, A. Iraji, S. M. Nabavizadeh, M. M. Ghanbari, G. Batta, and E. Turos, Med. Chem. Res. 29, 1355 (2020).
17. Y. Wang, H. Zhang, W. Huang, J. Kong, J. Zhou, and B. Zhang, Eur. J. Med. Chem. 44, 1638 (2009).
18. Y. Aoyama, M. Uenaka, M. Kii, M. Tanaka, T. Konoike, Y. Hayasaki-Kajiwara, N. Naya, and M. Nakajima, Bioorg. Med. Chem. 9, 3065 (2001).
19. W. T. Han, A. K. Trehan, J. J. Kim Wright, M. E. Federici, S. M. Seiler, and N. A. Meanwell, Bioorg. Med. Chem. 3, 1123 (1995).
20. N. E. Zhou, D. Guo, G. Thomas, A. V. N. Reddy, J. Kaleta, E. Purisima, R. Menard, R. G. Micetich, and R. Singh, Bioorg. Med. Chem. Lett. 13, 139 (2003).
21. Y. U. Cebeci, H. Bayrak, and Y. Şirin, Bioorg. Chem. 88, (2019).
22. T. Dražić and M. Roje, Chem. Heterocycl. Compd. 53, (2017).
23. M. Nishida, Y. Mine, S. Nonoyama, H. Kojo, S. Goto, and S. Kuwahara, J. Antibiot. (Tokyo). 30, 917 (1977).
24. L. M. Lima, B. N. M. da Silva, G. Barbosa, and E. J. Barreiro, Eur. J. Med. Chem. 208, (2020).
25. S. Hosseyni and A. Jarrahpour, Org. Biomol. Chem. 16, 6840 (2018).
26. J. Escalante, M. A. González-Tototzin, J. Aviña, O. Muñoz-Muñiz, and E. Juaristi, Tetrahedron 57, 1883 (2001).
27. L. Troisi, C. Granito, and E. Pindinelli, Heterocyclic Scaffolds I. in Topics in Heterocyclic Chemistry (Springer, Berlin, Heidelberg. 2010), pp. 101–209.
28. C. Palomo, J. Aizpurua, I. Ganboa, and M. Oiarbide, Curr. Med. Chem. 11, 1837 (2004).
29. A. Jarrahpour and M. Zarei, Tetrahedron Lett. 48, 8712 (2007).
30. D. Krishnaswamy, V. . Govande, V. . Gumaste, B. . Bhawal, and A. R. A. . Deshmukh, Tetrahedron 58, 2215 (2002).
31. R. Chen, B. Yang, and W. Su, Synth. Commun. 36, 3167 (2006).
32. A. Dandia, R. Singh, and P. Sharma, Heteroat. Chem. 14, 468 (2003).
33. L. S. Hegedus, J. Montgomery, Y. Narukawa, and D. C. Snustad, J. Am. Chem. Soc. 113, 5784 (1991).
34. J. A. Sordo, J. Gonzalez, and T. L. Sordo, J. Am. Chem. Soc. 114, 6249 (1992).
35. L. Jiao, Y. Liang, and J. Xu, J. Am. Chem. Soc. 128, 6060 (2006).
36. Y. Wang, Y. Liang, L. Jiao, D.-M. Du, and J. Xu, J. Org. Chem. 71, 6983 (2006).
37. B. Li, Y. Wang, D.-M. Du, and J. Xu, J. Org. Chem. 72, 990 (2007).
38. A. M.Malebari, D. Fayne, S. M.Nathwan, F. O’Connell, S. Noorani, B. Twamley, N. M. O’Boyle, J. O’Sullivan, D. M. Zisterer, and M. J. Meegan, Eur. J. Med. Chem. 189, 112050 (2020).
39. A. Jarrahpour, M. Eskandari, K. Zomorodian, E. Barati, R. Ashori, M. Salehi Vaziri, and K. Pakshir, Antiinfect. Agents Med. Chem. 9, 205 (2010).
40. N. Borazjani, S. Sepehri, M. Behzadi, A. Jarrahpour, J. A. Rad, M. Sasanipour, M. Mohkam, Y. Ghasemi, A. R. Akbarizadeh, C. Digiorgio, J. M. Brunel, M. M. Ghanbari, G. Batta, and E. Turos, Eur. J. Med. Chem. 179, 389 (2019).
41. H. S. Patel and H. J. Mistry, Phosphorus. Sulfur. Silicon Relat. Elem. 179, 1085 (2004).
42. S. G. Shingade and S. B. Bari, Med. Chem. Res. 22, 699 (2013).
43. R. Khanam, R. Kumar, I. I. Hejazi, S. Shahabuddin, R. Meena, V. Jayant, P. Kumar, A. R. Bhat, and F. Athar, Apoptosis 23, 113 (2018).
44. A. Mermer, H. Bayrak, Y. Şirin, M. Emirik, and N. Demirbaş, J. Mol. Struct. 1189, 279 (2019).
45. R. Heiran, A. Jarrahpour, E. Riazimontazer, A. Gholami, A. Troudi, C. Digiorgio, J. M. Brunel, and E. Turos, ChemistrySelect 6, 5313 (2021).
46. A. Jarrahpour, R. Heiran, V. Sinou, C. Latour, L. D. Bouktab, J. M. Brunel, J. Sheikh, and T. B. Hadda, Iran. J. Pharm. Res. 18, 34 (2019).
47. M. Alborz, A. Jarrahpour, R. Pournejati, H. R. Karbalaei-Heidari, V. Sinou, C. Latour, J. M. Brunel, H. Sharghi, M. Aberi, E. Turos, and L. Wojtas, Eur. J. Med. Chem. 143, 283 (2018).
48. A. Jarrahpour, M. Aye, J. A. Rad, S. Yousefinejad, V. Sinou, C. Latour, J. M. Brunel, and E. Turos, J. Iran. Chem. Soc. 15, 1311 (2018).
49. M. Bashiri, A. Jarrahpour, S. M. Nabavizadeh, S. Karimian, B. Rastegari, E. Haddadi, and E. Turos, Med. Chem. Res. 30, 258 (2021).
50. M. Bashiri, A. Jarrahpour, B. Rastegari, A. Iraji, C. Irajie, Z. Amirghofran, S. Malek-Hosseini, M. Motamedifar, M. Haddadi, K. Zomorodian, Z. Zareshahrabadi, and E. Turos, Monatsh. Chem. 151, 821 (2020).