A Stock Market Prediction Model Based on Deep Learning Networks
Subject Areas : Business Strategyseyyedeh mozhgan Beheshti Masalegou 1 , Mohammad-Ali Afshar-Kazemie 2 , jalal haghighat monfared 3 , Ali Rezaeian 4
1 - Department of Information Technology Managment,Tehran Central Branch,Islamic Azad Univrsity,Tehran,Iran
2 - Department of Industrial Management, Tehran Central Branch, Islamic Azad University, Tehran, Iran
3 - Department Of Industrial Management, Tehran Central Branch ,Islamic Azad University , Tehran , Iran
4 - Department of Governmental Management, Faculty of Management and Accounting ,Shahid Beheshti University, Tehran, Iran
Keywords:
Abstract :
Albahli, S., Nazir, T., Mehmood, A., Irtaza, A., Alkhalifah, A., & Albattah, W. (2022). AEI-DNET: a novel densenet model with an autoencoder for the stock market predictions using stock technical indicators. Electronics, 11(4), 611. https://doi.org/10.3390/electronics11040611
Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l'École normale supérieure,
Baek, Y., & Kim, H. Y. (2018). ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with Applications, 113, 457-480. https://doi.org/10.1016/j.eswa.2018.07.019
Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS one, 12(7), e0180944. https://doi.org/10.1371/journal.pone.0180944
Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. https://doi.org/10.1016/j.eswa.2017.04.006
Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. (2022). Predicting stock market index using LSTM. Machine Learning with Applications, 100320. https://doi.org/10.1016/j.mlwa.2022.100320
Box, G., Jenkins, G., Reinsel, G., & Ljung, G. (2015). Time series analysis, control, and forecasting . Hoboken. In: New Jersey: John Wiley & Sons. https://doi.org/10.1111/jtsa.12194
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006
Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2011). Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing, 20(1), 30-42. https://doi.org/10.1109/TASL.2011.2134090
Dietrich, R., Opper, M., & Sompolinsky, H. (1999). Statistical mechanics of support vector networks. Physical review letters, 82(14), 2975. https://doi.org/10.1103/PhysRevLett.82.2975
Doğan, S., Koçak, D., & Atan, M. (2022). Financial Distress Prediction Using Support Vector Machines and Logistic Regression. In Advances in Econometrics, Operational Research, Data Science and Actuarial Studies (pp. 429-452). Springer. https://doi.org/10.1007/978-3-030-85254-2_26
Fama, E. F. (2021). Market efficiency, long-term returns, and behavioral finance. University of Chicago Press. 10.7208/9780226426983-019
Gensler, A., Henze, J., Sick, B., & Raabe, N. (2016). Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM Neural Networks. 2016 IEEE international conference on systems, man, and cybernetics (SMC), https://doi.org/10.1109/SMC.2016.7844673
Gunduz, H. (2021). An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination. Financial Innovation, 7(1), 1-24. https://doi.org/10.1186/s40854-021-00243-3
Gündüz, H., Çataltepe, Z., & Yaslan, Y. (2017). Stock daily return prediction using expanded features and feature selection. Turkish Journal of Electrical Engineering & Computer Sciences, 25(6), 4829-4840. 10.3906/elk-1704-256
Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using support vector regression on daily and up to the minute prices. The Journal of finance and data science, 4(3), 183-201. https://doi.org/10.1016/j.jfds.2018.04.003
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97. https://doi.org/10.1109/MSP.2012.2205597
Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. (2018). NSE stock market prediction using deep-learning models. Procedia Computer Science, 132, 1351-1362. https://doi.org/10.1016/j.procs.2018.05.050
Hoseinzade, E., & Haratizadeh, S. (2019). CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 129, 273-285. https://doi.org/10.1016/j.eswa.2019.03.029
Jin, Z., Yang, Y., & Liu, Y. (2019). Stock closing price prediction based on sentiment analysis and LSTM. Neural Computing and Applications, 1-17. https://doi.org/10.1007/s00521-019-04504-2
Jung, G., & Choi, S.-Y. (2021). Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques. Complexity, 2021. https://doi.org/10.1155/2021/6647534
Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. 2014 science and information conference, https://doi.org/10.1109/SAI.2014.6918213
Kou, G., Yang, P., Peng, Y., Xiao, F., Chen, Y., & Alsaadi, F. E. (2020). Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods. Applied Soft Computing, 86, 105836. https://doi.org/10.1016/j.asoc.2019.105836
Lin, F.-L., Yang, S.-Y., Marsh, T., & Chen, Y.-F. (2018). Stock and bond return relations and stock market uncertainty: Evidence from wavelet analysis. International Review of Economics & Finance, 55, 285-294. https://doi.org/10.1016/j.iref.2017.07.013
Modjtahedi, A., & Daneshvar, A. (2020). A New Credit Risk System Using Hybrid ELECTRE TRI and NSGA-II Methods. Journal of System Management, 6(4), 1-25. https://dx.doi.org/10.30495/jsm.2021.1924341.1445
Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002
Nelson, D. M., Pereira, A. C., & de Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. 2017 International joint conference on neural networks (IJCNN), https://doi.org/10.1109/IJCNN.2017.7966019
Obthong, M., Tantisantiwong, N., Jeamwatthanachai, W., & Wills, G. (2020). A survey on machine learning for stock price prediction: algorithms and techniques. http://dx.doi.org/10.5220/0009340700630071
Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268. https://doi.org/10.1016/j.eswa.2014.07.040
Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PloS one, 15(1), e0227222. https://doi.org/10.1371/journal.pone.0227222
Rather, A. M., Sastry, V., & Agarwal, A. (2017). Stock market prediction and Portfolio selection models: a survey. Opsearch, 54(3), 558-579. https://doi.org/10.1007/s12597-016-0289-y
Sagheer, A., & Kotb, M. (2019). Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Scientific reports, 9(1), 1-16. https://doi.org/10.1038/s41598-019-55320-6
Salmani Danglani, S., Saeedi, P., Bahramzadeh, H. A., & Pourshahabi, F. (2019). Representing the Pattern of Relationship between Personality Traits and Investment Patterns in the Stock Market. Journal of System Management, 5(1), 79-114. https://dorl.net/dor/20.1001.1.23222301.2019.5.1.5.6
Selvamuthu, D., Kumar, V., & Mishra, A. (2019). Indian stock market prediction using artificial neural networks on tick data. Financial Innovation, 5(1), 1-12. https://doi.org/10.1186/s40854-019-0131-7
Srivastava, A. K., Srivastava, A., Singh, S., Sugandha, S., & Gupta, S. (2022). Design of Machine-Learning Classifier for Stock Market Prediction. SN Computer Science, 3(1), 1-11. https://doi.org/10.1007/s42979-021-00970-5
Taheri, A., Shafiee, M., & Evazzadeh Fath, F. (2019). Investigating the Role of Non-Financial Information Analysis and Risk-Return Analysis along with Financial Information in Increasing the Efficiency of the Stock Portfolio of Banks. Journal of System Management, 5(3), 123-138. https://dorl.net/dor/20.1001.1.23222301.2019.5.3.8.3
Xu, Y., Chhim, L., Zheng, B., & Nojima, Y. (2020). Stacked deep learning structure with bidirectional long-short term memory for stock market prediction. International Conference on Neural Computing for Advanced Applications, https://doi.org/10.1007/978-981-15-7670-6_37
Yadav, A., Jha, C., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091-2100. https://doi.org/10.1016/j.procs.2020.03.257
Yan, Y., & Yang, D. (2021). A stock trend forecast algorithm based on deep neural networks. Scientific Programming, 2021. https://doi.org/10.1155/2021/7510641
Yang, J., Zhang, S., Xiang, Y., Liu, J., Liu, J., Han, X., & Teng, F. (2020). LSTM auto‐encoder based representative scenario generation method for hybrid hydro‐PV power system. IET Generation, Transmission & Distribution, 14(24), 5935-5943. https://doi.org/10.1049/iet-gtd.2020.0757
Yu, P., & Yan, X. (2020). Stock price prediction based on deep neural networks. Neural Computing and Applications, 32(6), 1609-1628. https://doi.org/10.1007/s00521-019-04212-x
Zhong, X., & Enke, D. (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67, 126-139. https://doi.org/10.1016/j.eswa.2016.09.027
Zhong, X., & Enke, D. (2019). Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financial Innovation, 5(1), 1-20. https://doi.org/10.1186/s40854-019-0138-0