Multi-Objective Mathematical Model for Locating Flow Optimization Facilities in Supply Chain of Deteriorating Products
Subject Areas : Business StrategyHamidreza Mohammadi 1 , Reza Ehtesham Rasi 2
1 - Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
Abdallah, T., Diabat, A., Simchi-Levi, D. (2010). A carbon sensitive supply chain network problem with green procurement. In: 2010 40th International Conference on Computers and Industrial Engineering (CIE), pp. 1–6. DOI: 10.1109/ICCIE.2010.5668278
Azami Adel., Mehrabad,Mohammad. (2021). A production and distribution planning of perishable products with a fixed lifetime under vertical competition in the seller-buyer systems: A real-world application.JournalofManufacturing Systems,Vol.58(PartA),pp.223-247.DOI: 10.1016/j.jmsy.2020.12.001
Babazadeh,R.Ghaderi,H.Pishvaee,S.(2019).A benders-local branching algorithm for second-generation biodiesel supply chain network design under epistemic uncertainty. Computers & Chemical Engineering, 124,pp.364-380.Doi: 10.1016/j.jmsy.2020.12.001
Boronoos,Mehdi.,Torabi,SeyedAli.,Mousazadeh,Mohammad.(2019). A Bi-objective Mathematical Model for Closed-loop Supply Chain Network Design Problem. Journal of Quality Engineering and Production Optimization, Vol.4(1),pp.85-98.Doi : 10.22070/JQEPO.2019.3688.1086.
Chica, M. Juan, A. Bayliss, C. Cordon, O.; Kelton, D.(2020). Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation. SORT Stat. Oper. Res. Trans. Vol.44, pp. 1–24.Doi: 10.2436/20.8080.02.104.
Cole, R., & Aitken, J. (2019). The role of intermediaries in establishing a sustainable supply chain. Journal of Purchasing and Supply Management.Vol.26(2),pp.100-123.
DOI:10.1016/J.PURSUP.2019.04.001
Dai, Z., Aqlan, F., Zheng, X., & Gao, K. (2018). A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints. Computers & Industrial Engineering.Vol19(3),pp.338-352. Doi: 10.1016/j.cie.2018.04.007
Dey, K., & Saha, S. (2018). Influence of procurement decisions in two-period green supply chain. Journal of cleaner production, Vol.190(6),pp. 388-402.Doi: 10.1016/j.jclepro.2018.04.114
De Keizer, M., Akkerman, R., Grunow, M., Bloemhof, J. M., Haijema, R., & van der Vorst, J. G. (2017). Logistics network design for perishable products with heterogeneous quality decay. European Journal of Operational Research, 262(2), pp.535-549. Doi: 10.1016/j.ejor.2017.03.049
Ebner,J.,Young,P.,Geraghty,J.(2019). Intelligent self-designing production control strategy: Dynamic allocation hybrid pull-type mechanism applicable to closed-loop supply chains. Computers & Industrial Engineering .135, pp. 1127-1144. Doi: 10.1016/j.cie.2019.04.005
Gitinavard,H.Shirazi,M,A.Ghodsypour,S.H.(2019). A bi-objective multi-echelon supply chain model with Pareto optimal points evaluation for perishable products under uncertainty. Scientia iranica,Vol. 26(5),pp.2952-2970.Doi: 10.24200/SCI.2018.5047.1060
Katsaliaki K, Mustafee N, Kumar S. (2014) A game-based approach towards facilitating decision making for perishable products: an example of blood supply chain. Expert Syst Appl,Vol. 41(9),pp.4043–4059. Doi: 10.1016/j.eswa.2013.12.038
Keshteli,M,H., Fard,F.(2018). Sustainable closed-loop supply chain network design with discount supposition. Neural Computing and Applications.31,pp.5343-5377.Doi: 10.1007/s00521-018-3369-5
Khezerlou,H,S.,Vahdan,B.,Yazdani,M.(2020). A Bi-Objective Optimization Model to Design a Reliable Biomass Supply Chain Network under Uncertainty and Congestion Effect. Journal of Quality Engineering and Production Optimization,Vol.5(1),pp.19-32.Doi : 10.22070/JQEPO.2020.5149.1130
Kovaˇci´c D, Bogataj M (2013). Reverse logistics facility location using cyclical model of extended MRP theory. Cent Eur J Oper Res.Vol. 21(1),pp.41–57. Doi: 10.1007/s10100-012-0251-x
Kaur, H., & Singh, S. P. (2018). Heuristic modeling for sustainable procurement and logistics in a supply chain using big data. Computers & Operations Research.Vol.98, pp.301-321.Doi: 10.1016/j.cor.2017.05.008
Li, L., Dababneh, F., & Zhao, J. (2018). Cost-effective supply chain for electric vehicle battery remanufacturing. Applied energy, Vol.226, pp.277-286. Doi: 10.1016/j.apenergy.2018.05.115
Mogale, D. G., Kumar, M., Kumar, S. K., & Tiwari, M. K. (2018). Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transportation Research Part E: Logistics and Transportation Review,Vol. 111, pp.40-69.Doi: 10.1016/j.tre.2018.01.004
Mohammadi,H.R.Ehtesham,rasi,R.Mohtashami,Ali.(2020).A Hybrid Mehta-Heuristic algorithm for optimization location-routing problem of facilities in four echelon supply chain. Journal of Industrial Engineering International,16(4),pp.14-31.Doi: 10.30495/JIEI.2020.678787
Nurjann,K,P.Carvalho,S,M.Costa,L.(2017). Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. Int. J. Production Economics,183(3),pp.421-432.Doi: 10.1016/j.ijpe.2016.08.028
Pettersson, A. I., & Segerstedt, A. (2013). Measuring supply chain cost. International Journal of Production Economics.Vol.143(2), pp.357-363. Doi: 10.1016/j.ijpe.2012.03.012
Pellegrino, R., Costantino, N., & Tauro, D. (2019). Supply Chain Finance: A supply chain-oriented perspective to mitigate commodity risk and pricing volatility. Journal of Purchasing and Supply Management.Vol. 25(2), pp.118-133.Doi : 10.1016/j.pursup.2018.03.004
Oh, J., & Jeong, B. (2019). Tactical supply planning in smart manufacturing supply chain. Robotics and Computer-Integrated Manufacturing, Vol.55, pp.217-233.Doi : 10.1016/j.rcim.2018.04.003
Moradi, M.,Salavati,A.,Shafie,R.(2021). Determining and Modeling the Factors Affecting the Promotion of Customer Satisfaction of Electricity Distribution Companies.Jouranl of system management. Vol.7(3),pp.163-183.Doi: 10.30495/JSM.2021.1942263.1533
Rafie-Majd, Z., Pasandideh, S. H. R., & Naderi, B. (2018). Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Computers & Chemical Engineering.Vol.109, pp.9-22.Doi: 10.1016/j.rcim.2018.04.003
Rasi,Ehtesha,Reza.(2018). A Cuckoo Search Algorithm Approach for Multi Objective Optimization in Reverse Logistics Network under Uncertainty Condition. International Journal of Supply and Operations Management (IJSOM).Vol.5(1),pp.66-80.Doi: 10.22034/2018.1.5
Reza,Ehtesham,Rasi, Sohanian,Mehdi.(2020). A multi-objective optimization model for sustainable supply chain network with using genetic algorithm. Journal of Modelling in Management,Vol.15(1),pp.1-14.Doi: 10.1108/JM2-06-2020-0150
Sun, S., & Wang, X. (2019). Promoting traceability for food supply chain with certification. Journal of Cleaner Production.Vol. 217, pp.658-665.Doi: 10.1016/j.jclepro.2019.01.296
Saif-Eddine, A. S., El-Beheiry, M. M., & El-Kharbotly, A. K. (2019). An improved genetic algorithm for optimizing total supply chain cost in inventory location routing problem. Ain Shams Engineering Journal.Vol.10(1), pp.63-76.Doi: 10.1016/j.asej.2018.09.002
Shirazi,A.,Chaghoushi,A.Mahdiraji,A.Safari,B.(2020). Coordinating the Two-Echelon Supply Chain of Perishable Products with Uncertain Demand: A Game-Theoretic Approach. . Jouranl of system management. Vol.6(4),pp.103-138.Doi: 10.30495/JSM.2021.1910315.1368
Tavakkoli Moghaddam, S., Javadi, M. & Hadji Molana, S.M.(2019). A reverse logistics chain mathematical model for a sustainable production system of perishable goods based on demand optimization. J Ind Eng Int, Vol. 15, pp.709–721. Doi:10.1007/s40092-018-0287-1.
Tarvirdizadeh,D.,Mirzaeidaryani,S,.AmirKhiz,A.Pasbani,A.Azimi,H.(2021). A Hybrid Approach in Designing and Validating a Green Quality Management Model in the Food Industry. Jouranl of system management. Vol.7(1),pp.191-232.Doi: 10.30495/JSM.2021.1926288.1456
Vakili,R.Akbarpour,Mohsen.S,.Gitinavard,H.(2020).Multi-echelon green open-location-routing problem: A robust-based stochastic optimization approach. Scientia Iranica, Article in press.Doi: 10.24200/SCI.2020.52149.2564
Wu, T., Zhang, L. G., & Ge, T. (2019). Managing financing risk in capacity investment under green supply chain competition. Technological Forecasting and Social Change.Vol. 143, pp.37-44. Doi: 10.1016/j.techfore.2019.03.005
Wang, X., Guo, H., Yan, R., & Wang, X. (2018). Achieving optimal performance of supply chain under cost information asymmetry. Applied Mathematical Modelling.Vol. 53, pp.523-539.Doi: 10.1016/j.apm.2017.09.002
Wang,R.Lu,Shileil.Feng,Wei.(2020). A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost.Energy.197(1),pp.116-162.Doi: 10.1016/j.energy.2019.116723
XIAO, Y. B., Jian, C. H. E. N., & XU, X. L. (2008). Fresh product supply chain coordination under CIF business model with long distance transportation. Systems Engineering-Theory & Practice, Vol.28(2),pp.19-34.Doi: 10.1016/S1874-8651(09)60009-0
Zhang, C.-T., Liu, L.-P.(2013). Research on coordination mechanism in three-level green supply chain under non-cooperative game. Appl. Math. Model. 37 (5), pp.3369–3379.Doi: 10.1016/j.apm.2012.08.006
Zhang, S., Lee, C. K. M., Wu, K., & Choy, K. L. (2016). Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. Expert Systems with Applications.Vol. 65, pp.87-99.Doi: 10.1016/j.eswa.2016.08.037
Zhang, L., Guan, L., Kuo, Y. H., & Shen, H. (2019). Push or Pull? Perishable Products with Freshness-Keeping Effort. Asia-Pacific Journal of Operational Research, Vol.36(01),pp.44-63.Doi: 10.1142/S0217595919500088