Systematic Review of Wound Dressings: A Movement from the Past to the Present
Subject Areas : Application of Textile Products in other Sciences and DisciplinesPouriya Norooz Kermanshahi 1 , Graça Soares 2
1 - Campus de Azurém, Av. da Universidade, Guimarães, Pourtugal
2 - Centre for Textile Science and Technology (2C2T), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
Keywords: hydrogel, Wound Dressing, Skin, Wound, Medical textiles,
Abstract :
This systematic review aims at investigating different wound dressings commonly used for the healing process and skin repair. Five databases, namely SCOPUS, Web of Science, Medline, Google Scholar, and Cochrane Database of Systematic Reviews, up to 2020, were scanned for papers specific to the topic of concern. The blinded randomized controlled trials, in vivo and in vitro studies comparing common wound dressings, including traditional, natural/biological, and artificial ones were studied in the present review. Finally, the researchers selected 22 studies. From which the data related to the clinical features of wound dressings and their advantages and disadvantages) were derived. The review of literature suggests that many treatment combinations are utilized as wound dressings based on the wound type and hospital guidelines. Nevertheless, there are conflicting views about the most appropriate choice. The findings of the reviewed articles indicate that hydrogels are the most common wound dressing used for wounds and burns due to high thermal/mechanical stability and low water evaporation. However, it is suggested to apply hybrid hydrogel membranes to overcome the low mechanical strength of a single component
[1] R. D. Sontheimer, "Skin is not the largest organ", J. Invest. Dermatol., vol. 134, no. 2, pp. 581-582, 2014. doi: 10.1038/jid.2013.335
[2] A. Moeini, P. Pedram, P. Makvandi, M. Malinconico, and G. Gomez d'Ayala, "Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review", Carbohydr. Polym., vol. 233, pp. 115839, 2020. doi: 10.1016/j.carbpol.2020.115839
[3] A. W. Chua, Y. C. Khoo, B. K. Tan, K. C. Tan, C. L. Foo, and S. J. Chong, "Skin tissue engineering advances in severe burns: Review and therapeutic applications", Burns. Trauma., vol. 4, no. 3, 2016. doi: 10.1186/s41038-016-0027-y
[4] T. C. Wikramanayake, O. Stojadinovic, and M. Tomic-Canic, "Epidermal Differentiation in Barrier Maintenance and Wound Healing", Adv. Wound. Care. (New Rochelle), vol. 3, no. 3, pp. 272-280. 2014. doi: 10.1089/wound.2013.0503
[5] R. Goyal, L. K. Macri, H. M. Kaplan, and J. Kohn, "Nanoparticles and nanofibers for topical drug delivery", J. Control. Release., vol. 240, pp. 77-92, 2016. doi: 10.1016/j.jconrel.2015.10.049
[6] E. A. Gantwerker, and D. B. Hom, "Skin: Histology and physiology of wound healing", Facial. Plast. Surg. Clin. North. Am., vol. 19, no. 3, pp. 441-53, 2011. doi: 10.1016/j.fsc.2011.06.009
[7] T. Abdelrahman, and H. Newton, "Wound dressings: principles and practice", Surgery (oxford), vol. 29, no. 10, pp. 491-495, 2011. doi: 10.1016/j.mpsur.2011.06.007
[8] S. MacNeil, "Progress and opportunities for tissue-engineered skin", Nature, vol. 445, no. 7130, pp. 874-880, 2007. doi: 10.1038/nature05664
[9] Wound care market by product (foams, hydrocolloids, alginates, antimicrobial dressings, assessment, NPWT devices, substitutes, sutures, staples, tapes), wound (surgical, trauma, diabetic ulcers, burns), end-user, region - Global Forecast to 2024 [database on the Internet]. 2019.
[10] J. M. Reinke, H. Sorg, "Wound repair and regeneration", Eur. Surg. Res., vol. 49, no. 1, pp. 35-43, 2012. doi: 10.1159/000339613
[11] S. Namgoong, and S. K. Han, "Status of wound management in Korea", Wound. Repair. Regen., vol. 26, Suppl 1, pp. S3-s8, 2018. doi: 10.1111/wrr.12576
[12] A. Manikandan, S. T. K. Raja, T. Thiruselvi, M. Vaishnavi, R. Siva, and A. Gnanamani, "Engineered protein hydrogel for open wound management in Canines", Wound. Med., vol. 22, pp. 32-36, 2018. doi: 10.1016/j.wndm.2018.07.001
[13] S. Sarabahi, "Recent advances in topical wound care", Indian J. Plast. Surg., vol. 45, no. 2, pp. 379-387, 2012. doi: 10.4103/0970-0358.101321
[14] P. Zahedi, I. Rezaeian, S. O. Ranaei‐Siadat, S. H. Jafari, and P. Supaphol", A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages", Polymers. Adv. Technol., vol. 21, no. 2, pp. 77-95, 2010. doi: 10.1002/pat.1625
[15] H. C. Korting, C. Schöllmann, and R. J. White, "Management of minor acute cutaneous wounds: importance of wound healing in a moist environment", J. Eur. Acad. Dermatol. Venereol., vol. 25, no. 2, pp. 130-137, 2011. doi: 10.1111/j.1468-3083.2010.03775.x
[16] R. S. Ambekar, and B. Kandasubramanian, "Advancements in nanofibers for wound dressing: A review", Eur. Polymer. J., vol. 117, pp. 304-336, 2019. doi: 10.1016/j.eurpolymj.2019.05.020
[17] J. P. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J., "Cochrane handbook for systematic reviews of interventions: John Wiley & Sons, 2019.
[18] L. Colobatiu, A. Gavan, A. V. Potarniche, V. Rus, Z. Diaconeasa, A. Mocan, I. Tomuta, S. Mirel, and M. Mihaiu, "Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. Reactive. Functional. Polymers., vol. 145, p. 104369, 2019. doi: 10.1016/j.reactfunctpolym.2019.104369
[19] Z. Hussain, H. Katas, M. C. Mohd Amin, E. Kumolosasi, and S. Sahudin, "Downregulation of immunological mediators in 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions by hydrocortisone-loaded chitosan nanoparticles", Int. J. Nanomedicine, vol. 9, pp. 5143-5156, 2014. doi: 10.2147/ijn.s71543
[20] J. C. Kerihuel, "Effect of activated charcoal dressings on healing outcomes of chronic wounds" J. Wound. Care., vol. 19, no. 5, pp. 208-215, 2010. doi: 10.12968/jowc.2010.19.5.48047
[21] A. B. Stoian, I. Demetrescu, and D. Ionita, "Nanotubes and nano pores with chitosan construct on TiZr serving as drug reservoir" Colloids. Surf. B. Biointerfaces., vol. 185, p. 110535, 2020. doi: 10.1016/j.colsurfb.2019.110535
[22] M. D. Konieczynska, J. C. Villa-Camacho, C. Ghobril, M. Perez-Viloria, K. M. Tevis, W. A. Blessing, A. Nazarian, E. K. Rodriguez, and M.W. Grinstaff, "On-Demand Dissolution of a Dendritic Hydrogel-based Dressing for Second-Degree Burn Wounds through Thiol-Thioester Exchange Reaction" Angew. Chem. Int. Ed. Engl., vol. 55, no. 34, pp. 9984-9987, 2016. doi: 10.1002/anie.201604827
[23] Z. Değim, N. Çelebi, C. Alemdaroğlu, M. Deveci, S. Öztürk, and C. Özoğul, "Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing" Int. Wound. J., vol. 8, no. 4, pp. 343-354, 2011. doi: 10.1111/j.1742-481X.2011.00795.x
[24] Y. Matsumoto, and Y. Kuroyanagi, "Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor" J. Biomater. Sci. Polym. Ed., vol. 21, no. 6-7, pp. 715-726, 2010. doi: 10.1163/156856209x435844
[25] M. N. Storm-Versloot, C. G. Vos, D. T. Ubbink, and H. Vermeulen, "Topical silver for preventing wound infection", Cochrane. Database. Syst. Rev. vol. 2010, no. 3, p. Cd006478, 2010. doi: 10.1002/14651858.CD006478.pub2
[26] P. Wen, M. H. Zong, R. J. Linhardt, K. Feng, and H. Wu, "Electrospinning: A novel nano-encapsulation approach for bioactive compounds", Trends. Food. Sci. Technol., vol. 70, pp. 56-68, 2017. doi: 10.1016/j.tifs.2017.10.009
[27] K. Pal, A. K. Banthia, and D. K. Majumdar, "Biomedical evaluation of polyvinyl alcohol-gelatin esterified hydrogel for wound dressing", J. Mater. Sci. Mater. Med., vol. 18, no. 9, pp. 1889-1894, 2007. doi: 10.1007/s10856-007-3061-2
[28] B. S. Patil, V. S. Mastiholimath, and A. R. Kulkarni, "Development and evaluation of psyllium seed husk polysaccharide based wound dressing films", Oriental. Pharm. Exper. Med., vol. 11, no. 2, pp. 123-129, 2011. doi: 10.1007/s13596-011-0012-8
[29] C. Jinno, N. Morimoto, R. Ito, M. Sakamoto, S. Ogino, T. Taira, and S. Suzuki, "A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing" Biomed. Res. Int. vol. 2016, p. 4567146, 2016. doi: 10.1155/2016/4567146
[30] L. Sun, J. Han, Z. Liu, S. Wei, X. Su, and G. Zhang, "The facile fabrication of wound compatible anti-microbial nanoparticles encapsulated Collagenous Chitosan matrices for effective inhibition of poly-microbial infections and wound repairing in burn injury care: Exhaustive in vivo evaluations", J. Photochem. Photobiol. B, vol. 197, p. 111539, 2019. doi: 10.1016/j.jphotobiol.2019.111539
[31] M. Tummalapalli, M. Berthet, B. Verrier, B. L. Deopura, M. S. Alam, and B. Gupta, "Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents", Int. J. Biol. Macromol., vol. 82, pp. 104-113, 2016. doi: 10.1016/j.ijbiomac.2015.10.087
[32] E. Pinho, and G. Soares, "Functionalization of cotton cellulose for improved wound healing", J. Mater. Chem. B., vol. 6, no. 13, pp. 1887-1898, 2018. doi: 10.1039/c8tb00052b
[33] K. I. Shingel, L. Di Stabile, J. P. Marty, and M. P. Faure, "Inflammatory inert poly(ethylene glycol)--protein wound dressing improves healing responses in partial- and full-thickness wounds" Int. Wound. J., vol. 3, no. 4, pp. 332-342, 2006. doi: 10.1111/j.1742-481X.2006.00262.x
[34] N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, N. Aktas, and M. Turk, "Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties" Int. J. Biol. Macromol., vol. 82, pp. 150-159, 2016. doi: 10.1016/j.ijbiomac.2015.10.057
[35] M. Kokabi, M. Sirousazar, and Z. M. Hassan, "PVA–clay nanocomposite hydrogels for wound dressing", Eur. Polymer. J., vol. 43, no. 3, pp. 773-781, 2007. doi: 10.1016/j.eurpolymj.2006.11.030
[36] K. Khezri, M. R. Farahpour, and S. M. Rad, "Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent" Colloids. Surf. A, vol. 589, p. 124414, 2020. doi: 10.1016/j.colsurfa.2020.124414
[37] A. C. Alavarse, F. W. de Oliveira Silva, J. T. Colque, V. M. da Silva, T. Prieto, E. C Venancio, and J. J. Bonvent, "Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing", Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 77, pp. 271-281, 2017. doi: 10.1016/j.msec.2017.03.199
[38] S. Calamak, C. Erdoğdu, M. Ozalp, and K. Ulubayram, "Silk fibroin based antibacterial bionanotextiles as wound dressing materials", Mater. Sci. Eng. C Mater. Biol. Appl., vol. 43, pp. 11-20, 2014. doi: 10.1016/j.msec.2014.07.001
[39] G. D. Mogoşanu, and A. M. Grumezescu, "Natural and synthetic polymers for wounds and burns dressing" Int. J. Pharm., vol. 463, no. 2, pp. 127-136, 2014. doi: 10.1016/j.ijpharm.2013.12.015
[40]. Z. Zarei, M. Mirjalili, and P. Norooz Kermanshahi, "Optimization of Dendrimer Polyamidoamin Electrospun Nanofibers: Preparation and Properties", Iranian J of Biotech, vol. 20, no. 1, pp. 36-45, 2022.
[41] R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura, "Biomaterials based on chitin and chitosan in wound dressing applications", Biotechnol. Adv., vol. 29, no. 3, pp. 322-337, 2011. doi: 10.1016/j.biotechadv.2011.01.005
[42] S. Homaeigohar, A. R. Boccaccini, "Antibacterial biohybrid nanofibers for wound dressings" Acta. Biomater., vol. 107, pp. 25-49, 2020. doi: 10.1016/j.actbio.2020.02.022
[43] S. Dhivya, V. V. Padma, and E Santhini, "Wound dressings - a review", Biomedicine (Taipei), vol. 5, no. 4, p. 22, 2015. doi: 10.7603/s40681-015-0022-9
[44] G. D. Winter Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, vol. 193, pp. 293-294, 1962. doi: 10.1038/193293a0
[45] E. A. Kamoun, X. Chen, M. S. M. Eldin, and E. R. S. Kenawy, "Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers", Arabian J. Chem., vol. 8, no. 1, pp. 1-14, 2015. doi: 10.1016/j.arabjc.2014.07.005
[46] T. S. Stashak, E. Farstvedt, Othic A. Update on wound dressings: Indications and best use. Clin Techniq Equine Pract 2004;3(2):148-63. doi: 10.1053/j.ctep.2004.08.006
[47] M. Abbasipour, M. Mirjalili, R. Khajavi, and M. M. Majidi, "Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing", J. Eng. Fibers. Fabrics., vol. 9, no. 1, p. 155892501400900114, 2014. doi: 10.1177/155892501400900114
[48] V. C. van der Veen, M. B. van der Wal, M. C. van Leeuwen, M. M. Ulrich, and E. Middelkoop, "Biological background of dermal substitutes", Burns, vol. 36, no 3, pp. 305-321, 2010. doi: 10.1016/j.burns.2009.07.012
[49] A. Gaspar-Pintiliescu, A. M. Stanciuc, and O. Craciunescu, "Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review", Int. J. Biol. Macromol., vol. 138, pp. 854-865, 2019. doi: 10.1016/j.ijbiomac.2019.07.155
[50] A. D. Sezer, F. Hatipoğlu, E. Cevher, Z. Oğurtan, A. L. Baş, and J. Akbuğa, "Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation", AAPS PharmSciTech., 2007;8(2):Article 39. doi: 10.1208/pt0802039
[51] S. Z. Moghadamtousi, H. A. Kadir, P. Hassandarvish, H. Tajik, S. Abubakar, and K. Zandi, "A review on antibacterial, antiviral, and antifungal activity of curcumin" Biomed. Res. Int., vol. 2014, p. 186864, 2014. doi: 10.1155/2014/186864
[52] Y. I. Jeong, H. S. Na, D. H. Seo, D. G. Kim, H. C. Lee, M. K. Jang, S. K. Na, S. H. Roh, S. I. Kim, and J. W. Nah, "Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity", Int. J. Pharm., vol. 352, no. 1-2, pp. 317-23, 2008. doi: 10.1016/j.ijpharm.2007.11.001
[53] N. Naseri, H. Valizadeh, and P. Zakeri-Milani, "Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application", Adv. Pharm. Bull., vol. 5, no. 3, pp. 305-313, 2015. doi: 10.15171/apb.2015.043
[54] Z. Drulis-Kawa, and A. Dorotkiewicz-Jach, "Liposomes as delivery systems for antibiotics". Int. J. Pharm., vol. 387 no. 1-2, pp. 187-198, 2010. doi: 10.1016/j.ijpharm.2009.11.033
[55] H. Jiang, L. Wang, and K. Zhu, "Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents", J. Control. Release., vol. 193, pp. 296-303, 2014. doi: 10.1016/j.jconrel.2014.04.025
[56] E. Pinho, M. Grootveld, G. Soares, and M. Henriques, "Cyclodextrin-based hydrogels toward improved wound dressings", Crit. Rev. Biotechnol., vol. 34, no. 4, pp. 328-337, 2014. doi: 10.3109/07388551.2013.794413
[57] E. Pinho, M. Henriques, and G. Soares, "Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection", Cellulose, vol. 21 no. 6, pp. 4519-4530, 2014. doi: 10.1007/s10570-014-0439-4
[58] E. Pinho, and G. Soares, "Cotton‐hydrogel composite for improved wound healing: synthesize optimization and physicochemical characterization—part 1", Polymers Adv. Technol., vol. 29, no. 12, pp. 3114-3124, 2018. doi: 10.1002/pat.4432
[59] E. Pinho, R. C. Calhelha, I. C. Ferreira, and G. Soares, "Cotton‐hydrogel composite for improved wound healing: Antimicrobial activity and anti‐inflammatory evaluation—Part 2", Polymers Adv. Technol., vol. 30, no. 4, pp. 863-871, 2019. doi: 10.1002/pat.4519
[60] E. Pinho, S. Machado, and G. Soares, "Smart Hydrogel for the pH‐Selective Drug Delivery of Antimicrobial Compounds', Macromolecular Symposia., vol. 385, no. 1, p. 1800182, 2019. doi: 10.1002/masy.201800182
[61] V. Moshakis, M. J. Fordyce, J. D. Griffiths, and J. A. McKinna, "Tegadern versus gauze dressing in breast surgery", Br. J. Clin. Pract., vol. 38, no. 4, pp. 149-152, 1984.
[62] S. Thomas, P. Loveless, and N. Hay, "Comparative review of the properties of six semipermeable film dressings", Pharm. J., vol. 240, pp. 785-787, 1988.
[63] D. Morgan, "Wounds—What should a dressing formulary include", Hosp. Pharmacist. vol. 9, pp. 261-266, 2002 .
[64] Thomson T. Foam composite. Google Patents; 2006.
[65] P. Chaganti, I. Gordon, J. H. Chao, and S. Zehtabchi, "A systematic review of foam dressings for partial thickness burns", Am. J. Emerg. Med., vol. 37, no. 6, pp. 1184-1190, 2019. doi: 10.1016/j.ajem.2019.04.014
[66] E. A. Kamoun, E. S. Kenawy, and X. Chen, "A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings", J. Adv. Res., vol. 8, no. 3, pp. 217-233, 2017. doi: 10.1016/j.jare.2017.01.005
[67] T. Chen, Y. Chen, H. U. Rehman, Z. Chen, Z. Yang, M. Wang, H. Li, and H. Liu, "Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing," ACS. Appl. Mater. Interfaces, vol. 10, no. 39, pp. 33523-33231, 2018. doi: 10.1021/acsami.8b10064
[68] E. Pinho, M. Grootveld, G. Soares, and M. Henriques, "Cyclodextrin-based hydrogels toward improved wound dressings," Crit. Rev. Biotechnol., vol. 34, no. 4, pp. 328-337, 2014. doi: 10.3109/07388551.2013.794413
69Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polymer J 2015;65:252-67. doi: 10.1016/j.eurpolymj.2014.11.024
[70] G. Hagan, United States Patent Washington, D.C.: United States Patent and Trademark Office; 1992.
[71] F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H.M. Akil, "Classification, processing and application of hydrogels: A review", Materials Sci. Eng. C., vol. 57, pp. 414-133, 2015. doi: 10.1016/j.msec.2015.07.053
[72] J. S. Boateng, K. H. Matthews, H. N. Stevens, G. M. Eccleston, "Wound healing dressings and drug delivery systems: a review", J. Pharm. Sci., vol. 97, no.8, pp. 2892-923, 2008. doi: 10.1002/jps.21210
[73] K. Vowden, and P. Vowden, "Wound dressings: principles and practice", Surgery (Oxford), vol. 35, no. 9, pp. 489-94, 2017. doi: 10.1016/j.mpsur.2017.06.005
[74] S. Thomas," Hydrocolloids," J. Wound. Care., vol. 1 no. 2, pp, 27-30, 1992. doi: 10.12968/jowc.1992.1.2.27