Evaluating the Efficiency of Different Cover Forms of the Large Spans in Flowers and Plant Exhibitions Based on the Natural Ventilation Vystem in a Moderate and Humid Climate
Subject Areas :
Space Ontology International Journal
Alireza Soltanzadeh
1
,
Katayoun Taghizadeh
2
,
Jamshid Emami
3
1 - M.Arch., Department of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
2 - Associate Professor, Department of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran.
3 - Member of The Industrial Design Department Scientific Board, College of Fine Arts, University of Tehran, Tehran, Iran.
Received: 2017-07-04
Accepted : 2017-09-12
Published : 2017-09-01
Keywords:
References:
Baeza, E. J., Perez-Parra, J. J., Lopez, J. C., & Montero, J. I. (2007, October). CFD simulation of natural ventilation of a parral greenhouse with a baffle device below the greenhouse vents. In International Symposium on High Technology for Greenhouse System Management: Greensys 2007 801 (pp. 885-892). doi: 10.17660/Acta Hortic.2008.801.104.
Bartzanas, T., Boulard, T. and Kittas, C. (2004). Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering, 88(4):479- 490. doi:10.1016/j.biosystems eng.2003.10.006.
Perén, J. I., van Hooff, T., Leite, B. C. C., &Blocken, B. (2016). CFD simulation of wind-driven upward cross ventilation and its enhancement in long buildings: Impact of single-span versus double-span leeward sawtooth roof and opening ratio. Building and Environment, 96, 142-156. doi: 10.1016/j.buildenv.2015.11.021.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., &Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. MeteorologischeZeitschrift, 15(3), 259-263. DOI: 10.1127/0941-2948/2006/0130.
Anderson, J. D., & Wendt, J. (1995). Computational fluid dynamics (Vol. 206). New York: McGraw-Hill.
Ameer, S. A., Chaudhry, H. N., & Agha, A. (2016). Influence of roof topology on the air distribution and ventilation effectiveness of wind towers. Energy and Buildings, 130, 733-746. https://doi.org/10.1016/j.enbuild.2016.09.005.
Khaoua, S. O., Bournet, P. E., Migeon, C., Boulard, T., &Chassériaux, G. (2006). Analysis of greenhouse ventilation efficiency based on computational fluid dynamics. Biosystems Engineering, 95(1), 83-98. https://doi.org/10.1016/j.biosystemseng.2006.05.004.
Bournet, P. E., Khaoua, S. O., Boulard, T., Migeon, C., &Chassériaux, G. (2004). EFFECT OF ROOF AND SIDE OPENING COMBINATIONS.
Kim, T., Kim, K., & Kim, B. S. (2010). A wind tunnel experiment and CFD analysis on airflow performance of enclosed-arcade markets in Korea. Building and Environment, 45(5), 1329-1338. https://doi.org/10.1016/j.buildenv.2009.11.016.
Rico-García, E., Lopez-Cruz, I. L., Herrera-Ruiz, G., Soto-Zarazua, G. M., & Castaneda-Miranda, R. (2008). Effect of temperature on greenhouse natural ventilation under hot conditions: Computational Fluid Dynamics simulations. J. Appl. Sci, 8, 4543-4551.
Roy, J. C., Vidal, C., Fargues, J., &Boulard, T. (2008). CFD based determination of temperature and humidity at leaf surface. Computers and Electronics in Agriculture, 61(2), 201-212. https://doi.org/10.1016/j.compag.2007.11.007.
Ramponi, R., &Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Building and Environment, 53, 34-48. doi:10.1016/j.buildenv.2012.01.004.
Endalew, A. M., Hertog, M., Delele, M. A., Baetens, K., Persoons, T., Baelmans, M., ...&Verboven, P. (2009). CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture. International Journal of Heat and Fluid Flow, 30(2), 356-368. doi:10.1016/j.ij heat fluid flow.2008.12.007.
Zhai, Z., & Chen, Q. Y. (2004). Numerical determination and treatment of convective heat transfer coefficient in the coupled building energy and CFD simulation. Building and Environment, 39(8), 1001-1009. doi:10.1016/j.buildenv.2004.01.023.
Kaijima, S., Bouffanais, R., Willcox, K., & Naidu, S. (2013). Computational fluid dynamics for architectural design. Architectural Design, 83(2), 118-123. doi: 10.1002/ad.1566.
Schmid, F., Burrell, G. (2004). CFD Analysis challenges in building simulation for SIMBUILD 2004 Conference.
Couto, N., Rouboa, A., Monteiro, E., &Viera, J. (2012). Computational Fluid Dynamics Analysis of Greenhouses with Artificial Heat Tube. doi:10.4236/wjm.2012.24022.
Pontikakos, C., Ferentinos, K. P., Tsiligiridis, T. A., &Sideridis, A. B. (2006, September). Natural ventilation efficiency in a twin-span greenhouse using 3D computational fluid dynamics. In Of the 3rd International Conference on Information and Communication Technologies in Agriculture, September (pp. 20-23).
De la Torre-Gea, G., Soto-Zarazúa, G. M., López-Cruz, I., Torres-Pacheco, I., & Rico-García, E. (2011). Computational fluid dynamics in greenhouses: A review. African Journal of Biotechnology, 10(77), 17651-17662. doi: 10.5897/AJB10.2488.
Molina-Aiz, F. D., Valera, D. L., &Álvarez, A. J. (2004). Measurement and simulation of climate inside Almerıa-type greenhouses using computational fluid dynamics. Agricultural and Forest Meteorology, 125(1), 33-51. doi:10.1016/j.agrformet.2004.03.009.
Abdeen, M. O. (2009). The effect of air pollution and thermal comfort in greenhouses.
Bartok Jr, J. W., & Aldrich, R. A. (1983, August). Low cost solar collectors for greenhouse water heating. In III International Symposium on Energy in Protected Cultivation 148 (pp. 771-774).
Pedlosky, Joseph (1987). Geophysical fluid dynamics. Springer. pp. 10–13. ISBN 978-0-387-96387-7.
Standard, A. S. H. R. A. E. (2004). Standard 55-2004. Thermal environmental conditions for human occupancy, 9-11.
Niktash, Amirreza. Huynh, Phuoc. (2014). CFD Simulation and Analysis of a Two-sided Windcatcher’s Inlet/Outlet Geometric Shape Effect in Ventilation Flow Through a Three Dimensional Room, 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8-11 December 2014.
Shane, F. (2011). Pedestrian Level Wind Study. Toronto, Ontario, Canada.
Yao, R., Li, B., & Liu, J. (2009). A theoretical adaptive model of thermal comfort–Adaptive Predicted Mean Vote (aPMV). Building and environment, 44(10), 2089-2096.
Thorsson, S., Lindberg, F., Eliasson, I., &Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International journal of climatology, 27(14), 1983-1993.
Bartak, M., Cermak, M., Clarke, J. A., Denev, J., Drkal, F., Lain, M., ...&Stankov, P. (2001). Experimental and numerical study of local mean age of air.
Olesen, B. W., &Brager, G. S. (2004). A better way to predict comfort. ASHRAE Journal, 46(8), 20.