A MAPE-K Loop Based Model for Virtual Machine Consolidation in Cloud Data Centers
Subject Areas : Journal of Computer & RoboticsNegin Najafizadegan 1 , Eslam Nazemi 2 , Vahid Khajehvand 3
1 - Islamic Azad University, Qazvin Branch, Qazvin, Iran
2 - Shahid Beheshti University
3 - Islamic Azad University, Qazvin Branch, Qazvin, Iran
Keywords:
Abstract :
[1] S. Basu, G. Kannayaram, S. Ramasubbareddy, C.
Venkatasubbaiah, Improved genetic algorithm
for monitoring of virtual machines in cloud
environment, in: Smart Intelligent Computing
and Applications, Springer, 2019 319-
326.https://doi.org/10.1007/978-981-13-1927-
3_34 105
[2] D. Agarwal, S. Jain, Efficient optimal algorithm
of task scheduling in cloud computing
environment, arXiv preprint arXiv:1404.2076,
(2014),
[3] A. Ponraj, Optimistic virtual machine placement
in cloud data centers using queuing approach,
Future Generation Computer Systems, 93 (2019)
338-
344.https://doi.org/10.1016/j.future.2018.10.022
[4] S.B. Shaw, A.K. Singh, Use of proactive and
reactive hotspot detection technique to reduce the
number of virtual machine migration and energy
consumption in cloud data center, Computers &
Electrical Engineering, 47 (2015) 241-254,
[5] M.C. Silva Filho, C.C. Monteiro, P.R. Inácio,
M.M. Freire, Approaches for optimizing virtual
machine placement and migration in cloud
environments: A survey, Journal of Parallel and
Distributed Computing, 111 (2018) 222-
250.https://doi.org/10.1016/j.jpdc.2017.08.010
[6] R.W. Ahmad, A. Gani, S.H.A. Hamid, M.
Shiraz, A. Yousafzai, F. Xia, A survey on virtual
machine migration and server consolidation
frameworks for cloud data centers, Journal of
network and computer applications, 52 (2015)
11-25,
[7] Z. Li, An adaptive overload threshold selection
process using Markov decision processes of
virtual machine in cloud data center, Cluster
Computing, 22 (2019) 3821-
3833.https://doi.org/10.1007/s10586-018-2408-4
[8] M. Masdari, S.S. Nabavi, V. Ahmadi, An
overview of virtual machine placement schemes
in cloud computing, Journal of Network and
Computer Applications, 66 (2016) 106-
127.https://doi.org/10.1016/j.jnca.2016.01.011
[9] H.-P. Jiang, W.-M. Chen, Self-adaptive resource
allocation for energy-aware virtual machine
placement in dynamic computing cloud, Journal
of Network and Computer Applications, 120
(2018) 119-129,
[10] Z. Luo, Z. Qian, Burstiness-aware server
consolidation via queuing theory approach in a
computing cloud, 2013 IEEE 27th International
Symposium on Parallel and Distributed
Processing, (2013) 332-341,
[11] W. Voorsluys, J. Broberg, S. Venugopal, R.
Buyya, Cost of virtual machine live migration in
clouds: A performance evaluation, IEEE
International Conference on Cloud Computing,
(2009) 254-265,
[12] L. Hadded, F.B. Charrada, S. Tata, Optimization
and approximate placement of autonomic
resources for the management of service-based
applications in the cloud, OTM Confederated
International Conferences" On the Move to
Meaningful Internet Systems", (2016) 175-
192.https://doi.org/10.1007/978-3-319-48472-
3_10
[13] P. Jamshidi, A. Ahmad, C. Pahl, Autonomic
resource provisioning for cloud-based software,
Proceedings of the 9th international symposium
on software engineering for adaptive and selfmanaging
systems, (2014) 95-104,
[14] M. Mohamed, M. Amziani, D. Belaïd, S. Tata, T.
Melliti, An autonomic approach to manage
elasticity of business processes in the cloud,
Future Generation Computer Systems, 50 (2015)
49-61,
[15] M. Mohamed, D. Belaïd, S. Tata, Extending
OCCI for autonomic management in the cloud,
Journal of Systems and Software, 122 (2016)
416-429,
[16] A. Beloglazov, R. Buyya, Optimal online
deterministic algorithms and adaptive heuristics
for energy and performance efficient dynamic
consolidation of virtual machines in cloud data
centers, Concurrency and Computation: Practice
and Experience, 24 (2012) 1397-1420.
https://doi.org/10.1002/cpe.1867
[17] Z. Xiao, W. Song, Q. Chen, Dynamic resource
allocation using virtual machines for cloud
computing environment, IEEE transactions on
parallel and distributed systems, 24 (2012) 1107-
1117,
[18] P.A. Dinda, Design, implementation, and
performance of an extensible toolkit for resource
prediction in distributed systems, IEEE
Transactions on Parallel and Distributed
Systems, 17 (2006) 160-
173.https://doi.org/10.1109/TPDS.2006.24
[19] J. Liang, K. Nahrstedt, Y. Zhou, Adaptive multiresource
prediction in distributed resource
sharing environment, IEEE International
Symposium on Cluster Computing and the Grid,
2004. CCGrid 2004., (2004) 293-
300.https://doi.org/10.1109/CCGrid.2004.13365
80
[20] E. Arianyan, H. Taheri, S. Sharifian, Novel
heuristics for consolidation of virtual machines
in cloud data centers using multi-criteria resource
management solutions, The Journal of
Supercomputing, 72 (2016) 688-
717.https://doi.org/10.1007/s11227-015-1603-9
[21] J. Subirats, J. Guitart, Assessing and forecasting
energy efficiency on Cloud computing platforms,
Future Generation Computer Systems, 45 (2015)
70-
94.https://doi.org/10.1016/j.future.2014.11.008
[22] M. Ghobaei‐Arani, A.A. Rahmanian, M. Shamsi,
A. Rasouli‐Kenari, A learning‐based approach
for virtual machine placement in cloud data
centers, International Journal of Communication
Systems, 31 (2018) e3537.
https://doi.org/10.1002/dac.3537
[23] F. Alharbi, Y.-C. Tian, M. Tang, W.-Z. Zhang,
C. Peng, M. Fei, An ant colony system for
energy-efficient dynamic virtual machine
placement in data centers, Expert Systems with
Applications, 120 (2019) 228-
238.https://doi.org/10.1016/j.eswa.2018.11.029
[24] R. Shaw, E. Howley, E. Barrett, An energy
efficient anti-correlated virtual machine
placement algorithm using resource usage
predictions, Simulation Modelling Practice and
Theory, 93 (2019) 322-
342.https://doi.org/10.1016/j.simpat.2018.09.019
[25] F. Farahnakian, A. Ashraf, T. Pahikkala, P.
Liljeberg, J. Plosila, I. Porres, H. Tenhunen,
Using ant colony system to consolidate VMs for
green cloud computing, IEEE Transactions on
Services Computing, 8 (2014) 187-
198.https://doi.org/10.1109/TSC.2014.2382555
[26] H. Hallawi, J. Mehnen, H. He, Multi-Capacity
Combinatorial Ordering GA in Application to
Cloud resources allocation and efficient virtual
machines consolidation, Future Generation
Computer Systems, 69 (2017) 1-
10.https://doi.org/10.1016/j.future.2016.10.025
[27] M.H. Ferdaus, M. Murshed, R.N. Calheiros, R.
Buyya, Virtual machine consolidation in cloud
data centers using ACO metaheuristic, European
conference on parallel processing, (2014) 306-
317.https://doi.org/10.1007/978-3-319-09873-
9_26
[28] F. Teng, L. Yu, T. Li, D. Deng, F. Magoulès,
Energy efficiency of VM consolidation in IaaS
clouds, The Journal of Supercomputing, 73
(2017) 782-809.https://doi.org/10.1007/s11227-
016-1797-5
[29] A. Beloglazov, J. Abawajy, R. Buyya, Energyaware
resource allocation heuristics for efficient
management of data centers for cloud
computing, Future generation computer systems,
28 (2012) 755-
768.https://doi.org/10.1016/j.future.2011.04.017
[30] A. Horri, M.S. Mozafari, G. Dastghaibyfard,
Novel resource allocation algorithms to
performance and energy efficiency in cloud
computing, The Journal of Supercomputing, 69
(2014) 1445-
1461.https://doi.org/10.1007/s11227-014-1224-8
[31] E. Arianyan, H. Taheri, S. Sharifian, Novel
energy and SLA efficient resource management
heuristics for consolidation of virtual machines
in cloud data centers, Computers & Electrical
Engineering, 47 (2015) 222-
240.https://doi.org/10.1016/j.compeleceng.2015.
05.006
[32] S. Singh, I. Chana, M. Singh, R. Buyya,
SOCCER: self-optimization of energy-efficient
cloud resources, Cluster Computing, 19 (2016)
1787-1800.https://doi.org/10.1007/s10586-016-
0623-4
[33] S. Singh, I. Chana, R. Buyya, STAR: SLA-aware
autonomic management of cloud resources, IEEE
Transactions on Cloud Computing,(2017).https://doi.org/10.1109/TCC.2017.264878
8
[34] S. Singh, I. Chana, EARTH: Energy-aware
autonomic resource scheduling in cloud
computing, Journal of Intelligent & Fuzzy
Systems, 30 (2016) 1581-1600.10.3233/IFS-
151866
[35] S.S. Gill, I. Chana, M. Singh, R. Buyya,
CHOPPER: an intelligent QoS-aware autonomic
resource management approach for cloud
computing, Cluster Computing, 21 (2018) 1203-
1241.https://doi.org/10.1007/s10586-017-1040-z
[36] M. Ghobaei-Arani, S. Jabbehdari, M.A.
Pourmina, An autonomic resource provisioning
approach for service-based cloud applications: A
hybrid approach, Future Generation Computer
Systems, 78 (2018) 191-
210.https://doi.org/10.1016/j.future.2017.02.022
[37] E. Outin, J.-E. Dartois, O. Barais, J.-L. Pazat,
Enhancing cloud energy models for optimizing
datacenters efficiency, 2015 International
Conference on Cloud and Autonomic
Computing, (2015) 93-
100.https://doi.org/10.1109/ICCAC.2015.10
[38] M. Maurer, I. Breskovic, V.C. Emeakaroha, I.
Brandic, Revealing the MAPE loop for the
autonomic management of cloud infrastructures,
2011 IEEE symposium on computers and
communications (ISCC), (2011) 147-
152.https://doi.org/10.1109/ISCC.2011.5984008
[39] J.O. Kephart, D.M. Chess, The vision of
autonomic computing, Computer, 36 (2003) 41-
50.https://doi.org/10.1109/MC.2003.1160055
[40] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, A.F.
Yassin, A practical guide to the IBM autonomic
computing toolkit, IBM Redbooks, 4 (2004),
[41] S. Younesszadeh, M.R. Meybodi, A link
prediction method based on learning automata in
social networks, Journal of Computer &
Robotics, 11 (2018) 43-55,
[42] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.
De Rose, R. Buyya, CloudSim: a toolkit for
modeling and simulation of cloud computing
environments and evaluation of resource
provisioning algorithms, Software: Practice and
experience, 41 (2011) 23-50.
https://doi.org/10.1002/spe.995
[43] K. Park, V.S. Pai, CoMon: a mostly-scalable
monitoring system for PlanetLab, ACM SIGOPS
Operating Systems Review, 40 (2006) 65-
74.https://doi.org/10.1145/1113361.1113374