Black Widow Optimization (BWO) Algorithm in Cloud Brokering Systems for Connected Internet of Things
Subject Areas :
Journal of Computer & Robotics
Nasim Jelodari
1
,
Ali AsgharPourhaji Kazem
2
1 - Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 - Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Received: 2022-06-01
Accepted : 2022-06-13
Published : 2022-07-01
Keywords:
References:
[1] S. Li, L.D. Xu, S. Zhao, The internet of things: a survey, Information systems frontiers, 17(2) (2015) 243-259.
[2] S.M. Besen, The European telecommunications standards institute: A preliminary analysis, Telecommunications policy, 14(6) (1990) 521-530.
[3] S. Samal, B. Acharya, P.K. Barik, Internet of Things (IoT) in agriculture toward urban greening, in: AI, Edge and IoT-based Smart Agriculture, Elsevier, 2022, pp. 171-182.
[4] A. Rejeb, Z. Suhaiza, K. Rejeb, S. Seuring, H. Treiblmaier, The Internet of Things and the circular economy: A systematic literature review and research agenda, Journal of Cleaner Production, (2022) 131439.
[5] K. Rose, S. Eldridge, L. Chapin, The internet of things: An overview, The internet society (ISOC), 80 (2015) 1-50.
[6] D.K. Sharma, S. Bhargava, K. Singhal, Internet of Things applications in the pharmaceutical industry, in: An Industrial IoT Approach for Pharmaceutical Industry Growth, Elsevier, 2020, pp. 153-190.
[7] I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Information Sciences, 237 (2013) 82-117. https://doi.org/https://doi.org/10.1016/j.ins.2013.02.041
[8] B. Galván, D. Greiner, J. Periaux, M. Sefrioui, G. Winter, Parallel Evolutionary Computation for solving complex CFD Optimization problems: a review and some nozzle applications, Parallel Computational Fluid Dynamics 2002, (2003) 573-604.
[9] J.H. Holland, Genetic Algorithms and Adaptation, in: O.G. Selfridge, E.L. Rissland, M.A. Arbib (Eds.) Adaptive Control of Ill-Defined Systems, Springer US, Boston, MA, 1984, pp. 317-333.
[10] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11(4) (1997) 341-359. https://doi.org/10.1023/A:1008202821328
[11] B.M. Angadi, M.S. Kakkasageri, S.S. Manvi, Computational intelligence techniques for localization and clustering in wireless sensor networks, in: Recent Trends in Computational Intelligence Enabled Research, Elsevier, 2021, pp. 23-40.
[12] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39-43.
[13] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1) (1996) 29-41. https://doi.org/10.1109/3477.484436
[14] Z.E. Ahmed, R.A. Saeed, A. Mukherjee, S.N. Ghorpade, 10 - Energy optimization in low-power wide area networks by using heuristic techniques, in: B.S. Chaudhari, M. Zennaro (Eds.) LPWAN Technologies for IoT and M2M Applications, Academic Press, 2020, pp. 199-223.
[15] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Advances in Engineering Software, 95 (2016) 51-67. https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.01.008
[16] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software, 69 (2014) 46-61. https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
[17] M. Azizi, S. Talatahari, A. Giaralis, Active Vibration Control of Seismically Excited Building Structures by Upgraded Grey Wolf Optimizer, IEEE Access, 9 (2021) 166658-166673.
[18] L. Xie, J. Zeng, Z. Cui, General framework of artificial physics optimization algorithm, in: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, 2009, pp. 1321-1326.
[19] M. Azizi, Atomic orbital search: A novel metaheuristic algorithm, Applied Mathematical Modelling, 93 (2021) 657-683. https://doi.org/https://doi.org/10.1016/j.apm.2020.12.021
[20] M. Azizi, S. Talatahari, A. Giaralis, Optimization of Engineering Design Problems Using Atomic Orbital Search Algorithm, IEEE Access, 9 (2021) 102497-102519. https://doi.org/10.1109/ACCESS.2021.3096726
[21] S. Talatahari, M. Azizi, A.H. Gandomi, Material generation algorithm: a novel metaheuristic algorithm for optimization of engineering problems, Processes, 9(5) (2021) 859.
[1] S. Li, L.D. Xu, S. Zhao, The internet of things: a survey, Information systems frontiers, 17(2) (2015) 243-259.
[2] S.M. Besen, The European telecommunications standards institute: A preliminary analysis, Telecommunications policy, 14(6) (1990) 521-530.
[3] S. Samal, B. Acharya, P.K. Barik, Internet of Things (IoT) in agriculture toward urban greening, in: AI, Edge and IoT-based Smart Agriculture, Elsevier, 2022, pp. 171-182.
[4] A. Rejeb, Z. Suhaiza, K. Rejeb, S. Seuring, H. Treiblmaier, The Internet of Things and the circular economy: A systematic literature review and research agenda, Journal of Cleaner Production, (2022) 131439.
[5] K. Rose, S. Eldridge, L. Chapin, The internet of things: An overview, The internet society (ISOC), 80 (2015) 1-50.
[6] D.K. Sharma, S. Bhargava, K. Singhal, Internet of Things applications in the pharmaceutical industry, in: An Industrial IoT Approach for Pharmaceutical Industry Growth, Elsevier, 2020, pp. 153-190.
[7] I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Information Sciences, 237 (2013) 82-117. https://doi.org/https://doi.org/10.1016/j.ins.2013.02.041
[8] B. Galván, D. Greiner, J. Periaux, M. Sefrioui, G. Winter, Parallel Evolutionary Computation for solving complex CFD Optimization problems: a review and some nozzle applications, Parallel Computational Fluid Dynamics 2002, (2003) 573-604.
[9] J.H. Holland, Genetic Algorithms and Adaptation, in: O.G. Selfridge, E.L. Rissland, M.A. Arbib (Eds.) Adaptive Control of Ill-Defined Systems, Springer US, Boston, MA, 1984, pp. 317-333.
[10] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11(4) (1997) 341-359. https://doi.org/10.1023/A:1008202821328
[11] B.M. Angadi, M.S. Kakkasageri, S.S. Manvi, Computational intelligence techniques for localization and clustering in wireless sensor networks, in: Recent Trends in Computational Intelligence Enabled Research, Elsevier, 2021, pp. 23-40.
[12] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39-43.
[13] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1) (1996) 29-41. https://doi.org/10.1109/3477.484436
[14] Z.E. Ahmed, R.A. Saeed, A. Mukherjee, S.N. Ghorpade, 10 - Energy optimization in low-power wide area networks by using heuristic techniques, in: B.S. Chaudhari, M. Zennaro (Eds.) LPWAN Technologies for IoT and M2M Applications, Academic Press, 2020, pp. 199-223.
[15] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Advances in Engineering Software, 95 (2016) 51-67. https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.01.008
[16] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software, 69 (2014) 46-61. https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
[17] M. Azizi, S. Talatahari, A. Giaralis, Active Vibration Control of Seismically Excited Building Structures by Upgraded Grey Wolf Optimizer, IEEE Access, 9 (2021) 166658-166673.
[18] L. Xie, J. Zeng, Z. Cui, General framework of artificial physics optimization algorithm, in: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, 2009, pp. 1321-1326.
[19] M. Azizi, Atomic orbital search: A novel metaheuristic algorithm, Applied Mathematical Modelling, 93 (2021) 657-683. https://doi.org/https://doi.org/10.1016/j.apm.2020.12.021
[20] M. Azizi, S. Talatahari, A. Giaralis, Optimization of Engineering Design Problems Using Atomic Orbital Search Algorithm, IEEE Access, 9 (2021) 102497-102519. https://doi.org/10.1109/ACCESS.2021.3096726
[21] S. Talatahari, M. Azizi, A.H. Gandomi, Material generation algorithm: a novel metaheuristic algorithm for optimization of engineering problems, Processes, 9(5) (2021) 859.
[22] M. Azizi, M.B. Shishehgarkhaneh, M. Basiri, Optimum design of truss structures by Material Generation Algorithm with discrete variables, Decision Analytics Journal, (2022) 100043. https://doi.org/https://doi.org/10.1016/j.dajour.2022.100043
[23] O.K. Erol, I. Eksin, A new optimization method: big bang–big crunch, Advances in Engineering Software, 37(2) (2006) 106-111.
[24] Ş.İ. Birbil, S.-C. Fang, An electromagnetism-like mechanism for global optimization, Journal of global optimization, 25(3) (2003) 263-282.
[25] N. Khodadadi, M. Azizi, S. Talatahari, P. Sareh, Multi-Objective Crystal Structure Algorithm (MOCryStAl): Introduction and Performance Evaluation, IEEE Access, 9 (2021) 117795-117812. https://doi.org/10.1109/ACCESS.2021.3106487
[26] M. Azizi, S. Talatahari, P. Sareh, Design optimization of fuzzy controllers in building structures using the crystal structure algorithm (CryStAl), Advanced Engineering Informatics, 52 (2022) 101616. https://doi.org/https://doi.org/10.1016/j.aei.2022.101616
[27] B. Talatahari, M. Azizi, S. Talatahari, M. Tolouei, P. Sareh, Crystal structure optimization approach to problem solving in mechanical engineering design, Multidiscipline Modeling in Materials and Structures, (2022).
[28] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, P. Sareh, Crystal Structure Algorithm (CryStAl): A Metaheuristic Optimization Method, IEEE Access, 9 (2021) 71244-71261. https://doi.org/10.1109/ACCESS.2021.3079161
[29] S. Talatahari, M. Azizi, Chaos Game Optimization: a novel metaheuristic algorithm, Artificial Intelligence Review, 54(2) (2021) 917-1004. https://doi.org/10.1007/s10462-020-09867-w
[30] M. Azizi, U. Aickelin, H.A. Khorshidi, M.B. Shishehgarkhaneh, Shape and size optimization of truss structures by Chaos game optimization considering frequency constraints, Journal of Advanced Research, (2022). https://doi.org/https://doi.org/10.1016/j.jare.2022.01.002
[31] R.V. Rao, V.J. Savsani, D. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Computer-aided design, 43(3) (2011) 303-315.
[32] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, simulation, 76(2) (2001) 60-68.
[33] M. Azizi, S. Talatahari, M. Basiri, M.B. Shishehgarkhaneh, Optimal design of low-and high-rise building structures by Tribe-Harmony Search algorithm, Decision Analytics Journal, (2022) 100067.
[34] S.-A. Ahmadi, Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems, Neural Computing and Applications, 28(1) (2017) 233-244. https://doi.org/10.1007/s00521-016-2334-4
[35] V. Hayyolalam, A.A. Pourhaji Kazem, Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems, Engineering Applications of Artificial Intelligence, 87 (2020) 103249. https://doi.org/https://doi.org/10.1016/j.engappai.2019.103249
[36] Y. Kessaci, N. Melab, E.-G. Talbi, A Pareto-based metaheuristic for scheduling HPC applications on a geographically distributed cloud federation, Cluster Computing, 16(3) (2013) 451-468.
[37] H.K. Mehta, P. Pawar, P. Kanungo, A two level broker system for infrastructure as a service cloud, Wireless Personal Communications, 90(3) (2016) 1135-1147.
[38] K.S. Yildirim, T.E. Kalayci, A. Ugur, Optimizing coverage in a k-covered and connected sensor network using genetic algorithms, in: Proceedings of the 9th WSEAS international conference on evolutionary computing, Citeseer, 2008, pp. 21-26.
[39] M. Elhoseny, A. Abdelaziz, A. Salama, A.e.-d. Riad, K. Muhammad, A. Kumar, A hybrid model of Internet of Things and cloud computing to manage big data in health services applications, Future Generation Computer Systems, 86 (2018). https://doi.org/10.1016/j.future.2018.03.005
[40] J. Mei, K. Li, Z. Tong, Q. Li, K. Li, Profit maximization for cloud brokers in cloud computing, IEEE Transactions on Parallel and Distributed Systems, 30(1) (2018) 190-203.
[41] P. Asghari, A. Rahmani, H. Haj Seyyed Javadi, Privacy-aware cloud service composition based on QoS optimization in Internet of Things, Journal of Ambient Intelligence and Humanized Computing, (2020). https://doi.org/10.1007/s12652-020-01723-7
[42] X. Ye, Y. Yin, L. Lan, Energy-efficient many-objective virtual machine placement optimization in a cloud computing environment, IEEE Access, 5 (2017) 16006-16020.
[43] M. Le Berre, F. Hnaien, H. Snoussi, Multi-objective optimization in wireless sensors networks, in: ICM 2011 Proceeding, IEEE, 2011, pp. 1-4.
[44] Z. Sun, Y. Zhang, Y. Nie, W. Wei, J. Lloret, H. Song, CASMOC: a novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks, wireless Networks, 23(4) (2017) 1201-1222.
[45] W. Wei, X. Fan, H. Song, X. Fan, J. Yang, Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing, IEEE transactions on services computing, 11(1) (2016) 78-89.
[46] S. Dörterler, M. Dörterler, S. Ozdemir, Multi-objective virtual machine placement optimization for cloud computing, in: 2017 International Symposium on Networks, Computers and Communications (ISNCC), IEEE, 2017, pp. 1-6.
[47] H. Li, M. Dong, K. Ota, M. Guo, Pricing and repurchasing for big data processing in multi-clouds, IEEE Transactions on Emerging Topics in Computing, 4(2) (2016) 266-277.
[48] I. Butun, M. Erol-Kantarci, B. Kantarci, H. Song, Cloud-centric multi-level authentication as a service for secure public safety device networks, IEEE Communications Magazine, 54(4) (2016) 47-53.
[49] S. Rana, D. Mishra, R. Arora, Privacy-Preserving Key Agreement Protocol for Fog Computing Supported Internet of Things Environment, Wireless Personal Communications, 119(1) (2021) 727-747. https://doi.org/10.1007/s11277-021-08234-4
[50] S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments, in: 2010 24th IEEE international conference on advanced information networking and applications, IEEE, 2010, pp. 400-407.
[51] A.M. Yadav, K.N. Tripathi, S.C. Sharma, An enhanced multi-objective fireworks algorithm for task scheduling in fog computing environment, Cluster Computing, 25(2) (2022) 983-998. https://doi.org/10.1007/s10586-021-03481-3
[52] M.A. Rakrouki, N. Alharbe, QoS-Aware Algorithm Based on Task Flow Scheduling in Cloud Computing Environment, Sensors, 22(7) (2022) 2632.
[53] N. Arora, R.K. Banyal, A Particle Grey Wolf Hybrid Algorithm for Workflow Scheduling in Cloud Computing, Wireless Personal Communications, 122(4) (2022) 3313-3345. https://doi.org/10.1007/s11277-021-09065-z
[54] H. Singh, S. Tyagi, P. Kumar, High availability and accessibility of services in cloud environment, in: 2018 4th International Conference on Computing Sciences (ICCS), IEEE, 2018, pp. 67-71.
[55] M. Prakash, R. Budihal, IMPROVING HIGH AVAILABILITY IN CLOUD INFRASTRUCTURE AT INSTANCE AND STORAGE LEVEL, Australian Journal of Wireless Technologies, Mobility and Security, 1(1) (2017) 1-7.
[56] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, X.-W. Wang, Modeling a dynamic data replication strategy to increase system availability in cloud computing environments, Journal of computer science and technology, 27(2) (2012) 256-272.
[57] B. Apduhan, M. Younas, T. Uchibayashi, Improving reliability and availability of Iaas services in hybrid clouds, in: International Conference on Computational Science and Its Applications, Springer, 2015, pp. 557-568.
[58] S. S, R. J, H.S. Guruprasad, Enhanced Load Balancing Algorithm in Three-Tier Cloud Computing, International Journal of Engineering Sciences & Emerging Technologies, 2 (2014) 296-301.
[59] M.R. Mesbahi, A.M. Rahmani, M. Hosseinzadeh, Reliability and high availability in cloud computing environments: a reference roadmap, Human-centric Computing and Information Sciences, 8(1) (2018) 1-31.
[60] H. Ma, A.S.d. Silva, W. Kuang, NSGA-II with Local Search for Multi-objective Application Deployment in Multi-Cloud, in: 2019 IEEE Congress on Evolutionary Computation (CEC), 2019, pp. 2800-2807.
[61] C. Guerrero, I. Lera, C. Juiz, Genetic-based optimization in fog computing: Current trends and research opportunities, Swarm and Evolutionary Computation, 72 (2022) 101094. https://doi.org/https://doi.org/10.1016/j.swevo.2022.101094
[62] V. Jafari, M.H. Rezvani, Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II metaheuristic algorithm, Journal of Ambient Intelligence and Humanized Computing, (2021). https://doi.org/10.1007/s12652-021-03388-2
[63] M. Azizi, A. Mousavi, R. Ejlali, S. Talatahari, Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm, Artificial Intelligence Review, 53 (2020) 1-32. https://doi.org/10.1007/s10462-019-09713-8
[64] T. Kumrai, K. Ota, M. Dong, J. Kishigami, D.K. Sung, Multiobjective optimization in cloud brokering systems for connected Internet of Things, IEEE Internet of Things Journal, 4(2) (2016) 404-413.