The Preemptive Just-in-time Scheduling Problem in a Flow Shop Scheduling System
Subject Areas : Business and MarketingJavad Rezaeian 1 , Sadegh Hosseini-Kia 2 , Iraj Mahdavi 3
1 - Department of industrial engineering, Mazandaran University of Science and Technology, Babol, Iran
2 - Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran.
3 - Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
Keywords:
Abstract :
Afshar nadjafi, B., & Shadrokh, S. (2010). The preemptive resource-constrained project scheduling problem subject to due dates and preemption penalties: An integer programming approach. Journal of Optimization in Industrial Engineering, Volume 1(Issue 1), 35-39.
Atashpaz-Gargari, E., & Lucas, C. (2007, 25-28 Sept. 2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. Paper presented at the 2007 IEEE Congress on Evolutionary Computation.
Baker, K. R., & Scudder, G. D. (1990). Sequencing with Earliness and Tardiness Penalties: A Review. Operations Research, 38(1), 22-36. doi:10.1287/opre.38.1.22
Behnamian, J., & Fatemi Ghomi, S. M. T. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied Soft Computing, 21, 139-148. doi:http://dx.doi.org/10.1016/j.asoc.2014.03.031
Chandra, P., Mehta, P., & Tirupati, D. (2009). Permutation flow shop scheduling with earliness and tardiness penalties. International Journal of Production Research, 47(20), 5591-5610. doi:10.1080/00207540802124301
Ebadi, A., & Moslehi, G. (2012). Mathematical models for preemptive shop scheduling problems. Computers & Operations Research, 39(7), 1605-1614. doi:http://dx.doi.org/10.1016/j.cor.2011.09.013
Esteve, B., Aubijoux, C., Chartier, A., & T’kindt, V. (2006). A recovering beam search algorithm for the single machine Just-in-Time scheduling problem. European Journal of Operational Research, 172(3), 798-813. doi:http://dx.doi.org/10.1016/j.ejor.2004.11.014
Finke, D. A., Medeiros, D. J., & Traband, M. T. (2007). Multiple machine JIT scheduling: a tabu search approach. International Journal of Production Research, 45(21), 4899-4915. doi:10.1080/00207540600871228
Fu, Q., Sivakumar, A. I., & Li, K. (2012). Optimisation of flow-shop scheduling with batch processor and limited buffer. International Journal of Production Research, 50(8), 2267-2285. doi:10.1080/00207543.2011.565813
Gerstl, E., Mor, B., & Mosheiov, G. (2015). A note: Maximizing the weighted number of just-in-time jobs on a proportionate flowshop. Information Processing Letters, 115(2), 159-162. doi:http://dx.doi.org/10.1016/j.ipl.2014.09.004
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning: Addison-Wesley, Reading, MA.
Hasanpour, j., ghodoosi, m., & hosseini, z. s. (2016). Optimizing a bi-objective preemptive multi-mode resource constrained project scheduling problem: NSGA-II and MOICA algorithms. Journal of Optimization in Industrial Engineering, 10(21), 79-92.
Hendel, Y., Runge, N., & Sourd, F. (2009). The one-machine just-in-time scheduling problem with preemption. Discrete Optimization, 6(1), 10-22. doi:http://dx.doi.org/10.1016/j.disopt.2008.08.001
Hendel, Y., & Sourd, F. (2006). Efficient neighborhood search for the one-machine earliness–tardiness scheduling problem. European Journal of Operational Research, 173(1), 108-119. doi:http://dx.doi.org/10.1016/j.ejor.2004.11.022
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: University of Michigan Press.
Huynh Tuong, N., & Soukhal, A. (2010). Due dates assignment and JIT scheduling with equal-size jobs. European Journal of Operational Research, 205(2), 280-289. doi:http://dx.doi.org/10.1016/j.ejor.2010.01.016
Khorasanian, D., & Moslehi, G. (2017). Two-machine flow shop scheduling problem with blocking, multi-task flexibility of the first machine, and preemption. Computers & Operations Research, 79, 94-108. doi:http://dx.doi.org/10.1016/j.cor.2016.09.023
Khorshidian, H., Javadian, N., Zandieh, M., Rezaeian, J., & Rahmani, K. (2011). A genetic algorithm for JIT single machine scheduling with preemption and machine idle time. Expert Systems with Applications, 38(7), 7911-7918. doi:http://dx.doi.org/10.1016/j.eswa.2010.10.066
Koulamas, C. (1998a). On the complexity of two-machine flowshop problems with due date related objectives. European Journal of Operational Research, 106(1), 95-100. doi:http://dx.doi.org/10.1016/S0377-2217(98)00323-3
Koulamas, C. (1998b). A guaranteed accuracy shifting bottleneck algorithm for the two-machine flowshop total tardiness problem. Computers & Operations Research, 25(2), 83-89. doi:http://dx.doi.org/10.1016/S0305-0548(97)00028-2
Lann, A., & Mosheiov, G. (1996). Single machine scheduling to minimize the number of early and tardy jobs. Computers & Operations Research, 23(8), 769-781. doi:http://dx.doi.org/10.1016/0305-0548(95)00078-X
Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of Machine Scheduling Problems. In E. L. J. B. H. K. P.L. Hammer & G. L. Nemhauser (Eds.), Annals of Discrete Mathematics (Vol. Volume 1, pp. 343-362): Elsevier.
Liao, C.-J., & Cheng, C.-C. (2007). A variable neighborhood search for minimizing single machine weighted earliness and tardiness with common due date. Computers & Industrial Engineering, 52(4), 404-413. doi:http://dx.doi.org/10.1016/j.cie.2007.01.004
Mehravaran, Y., & Logendran, R. (2012). Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times. International Journal of Production Economics, 135(2), 953-963. doi:http://dx.doi.org/10.1016/j.ijpe.2011.11.011
Najafi, E., Naderi, B., Sadeghi, H., & Yazdani, M. (2012). A Mathematical Model and a Solution Method for Hybrid Flow Shop Scheduling. Journal of Optimization in Industrial Engineering, 5(10), 65-72.
Nikjo, B., & Rezaeian, J. (2014). Meta heuristic for Minimizing Makespan in a Flow-line Manufacturing Cell with Sequence Dependent Family Setup Times. Journal of Optimization in Industrial Engineering, 7(16), 21-29.
Rezaeian, J., Seidgar, H., & Kiani, M. (2013). Scheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms. Journal of Optimization in Industrial Engineering, 6(13), 1-11.
Runge, N., & Sourd, F. (2009). A new model for the preemptive earliness–tardiness scheduling problem. Computers & Operations Research, 36(7), 2242-2249. doi:http://dx.doi.org/10.1016/j.cor.2008.08.018
Schaller, J. (2012). Scheduling a permutation flow shop with family setups to minimise total tardiness. International Journal of Production Research, 50(8), 2204-2217. doi:10.1080/00207543.2011.575094
Schaller, J., & Valente, J. M. S. (2013). A comparison of metaheuristic procedures to schedule jobs in a permutation flow shop to minimise total earliness and tardiness. International Journal of Production Research, 51(3), 772-779. doi:10.1080/00207543.2012.663945
Shabtay, D. (2012). The just-in-time scheduling problem in a flow-shop scheduling system. European Journal of Operational Research, 216(3), 521-532. doi:http://dx.doi.org/10.1016/j.ejor.2011.07.053
Shabtay, D., Bensoussan, Y., & Kaspi, M. (2012). A bicriteria approach to maximize the weighted number of just-in-time jobs and to minimize the total resource consumption cost in a two-machine flow-shop scheduling system. International Journal of Production Economics, 136(1), 67-74. doi:http://dx.doi.org/10.1016/j.ijpe.2011.09.011
Sourd, F. (2005). Punctuality and idleness in just-in-time scheduling. European Journal of Operational Research, 167(3), 739-751. doi:http://dx.doi.org/10.1016/j.ejor.2004.07.018
Sun, D.-h., Song, X.-x., Zhao, M., & Zheng, L.-J. (2012). Research on a JIT scheduling problem in parallel motorcycle assembly lines considering actual situations. International Journal of Production Research, 50(18), 4923-4936. doi:10.1080/00207543.2011.616232
Tadayoni Rad, S., Gholami, S., Shafaei, R., & Seidgar, H. (2015). Bi-objective Optimization for Just in Time Scheduling: Application to the Two-Stage Assembly Flow Shop Problem. Journal of Quality Engineering and Production Optimization, 1(1), 21-32. doi:10.22070/jqepo.2015.186
Varmazyar, M., & Salmasi, N. (2012). Sequence-dependent flow shop scheduling problem minimising the number of tardy jobs. International Journal of Production Research, 50(20), 5843-5858. doi:10.1080/00207543.2011.632385
Ventura, J. A., & Radhakrishnan, S. (2003). Single machine scheduling with symmetric earliness and tardiness penalties. European Journal of Operational Research, 144(3), 598-612. doi:http://dx.doi.org/10.1016/S0377-2217(02)00163-7
Zegordi, S. H., Itoh, K., & Enkawa, T. (1995). A knowledgeable simulated annealing scheme for the early/tardy flow shop scheduling problem. International Journal of Production Research, 33(5), 1449-1466. doi:10.1080/00207549508930220