Modelling and optimization of a tri-objective Transportation-Location-Routing Problem considering route reliability: using MOGWO, MOPSO, MOWCA and NSGA-II
Subject Areas : Cultural and Language StudiesFariba Maadanpour Safari 1 , Farhad Etebari 2 , Adel Pourghader Chobar 3
1 - Faculty of Mechanic and Industrial Engineering, Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Faculty of Mechanic and Industrial Engineering, Department of Industrial Engineering, Qazvin Branch, Islamic
Azad University, Qazvin, Iran
3 - Faculty of Mechanic and Industrial Engineering, Department of Industrial Engineering, Qazvin Branch, Islamic
Azad University, Qazvin, Iran
Keywords:
Abstract :
Adrang, H., Bozorgi-Amiri, A., Khalili-Damghani, K., Tavakkoli-Moghaddam, R. (2020). Planning for Medical Emergency Transportation Vehicles during Natural Disasters. Journal of Optimization in Industrial Engineering, 13(2), 185-197.
Albareda-Sambola, M., Díaz, J. A., & Fernández, E. (2001). Heuristic approaches for solving a class of combined location-routing problem. In 4th Metaheuristics international conference, pp. 405-410.
Albareda-Sambola, M., Dı́az, J. A., & Fernández, E. (2005). A compact model and tight bounds for a combined location-routing problem. Computers & Operations Research, 32(3), 407-428.
Ambrosino, D., & Scutella, M. G. (2005). Distribution network design: New problems and related models. European journal of operational research, 165(3), 610-624.
Boccia, M., Crainic, T. G., Sforza, A., &Sterle, C. (2010, May). A metaheuristic for a two echelon location-routing problem. In International Symposium on Experimental Algorithms, pp. 288-301.
Brandão, J. (2020). A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem. European Journal of Operational Research, 284(2), 559-571.
Caballero, R., González, M., Guerrero, F. M., Molina, J., &Paralera, C. (2007). Solving a multi-objective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia. European Journal of Operational Research, 177(3), 1751-1763.
Chaman-Motlagh, A. (2015). Superdefect photonic crystal filter optimization using grey wolf optimizer. IEEE Photonics Technology Letters, 27(22), 2355-2358.
Contardo, C., Hemmelmayr, V., &Crainic, T. G. (2012). Lower and upper bounds for the two-echelon capacitated location-routing problem. Computers & operations research, 39(12), 3185-3199.
Cornnejols, G., Fisher, M., &Nemhauser, G. (1977). Location of bank accounts of optimize float: An analytic study of exact and approximate algorithm. Management Science, 23, 789-810.
Emary, E., Zawbaa, H. M., &Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381.
Fazli-Khalaf, M., Khalilpourazari, S., &Mohammadi, M. (2017). Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Annals of Operations Research, 1-31.
Ghatreh Samani, M., & Hosseini-Motlagh, S. M. (2017). A hybrid algorithm for a two-echelon location-routing problem with simultaneous pickup and delivery under fuzzy demand. International Journal of Transportation Engineering, 5(1), 59-85.
Haeri, A., Hosseini‐Motlagh, S. M., Ghatreh Samani, M. R., & Rezaei, M. (2020). A mixed resilient‐efficient approach toward blood supply chain network design. International Transactions in Operational Research, 27(4), 1962-2001.
Haeri, A., Motlagh, S. M. H., Samani, M. R. G., & Rezaei, M. S. (2020). A bi-level programming approach for improving relief logistics operations: A real case in Kermanshah earthquake. Computers & Industrial Engineering, 106532.
Hidayatul, Y. S., Djunaidy, A., & Muklason, A. (2019, July). Solving Multi-objective Vehicle Routing Problem Using Hyper-heuristic Method by Considering Balance of Route Distances. In 2019 International Conference on Information and Communications Technology (ICOIACT) (pp. 937-942). IEEE.
Hosseini-Motlagh, S. M., Qamsari, A. N., & Samani, M. R. G. A ROBUST POSSIBILISTIC APPROACH FOR MULTI-DEPOT INVENTORY ROUTING PROBLEM. International Journal of Industrial Engineering: Theory, Applications and Practice, 27(2).
Hosseini-Motlagh, S. M., Samani, M. R. G., & Saadi, F. A. (2020). A novel hybrid approach for synchronized development of sustainability and resiliency in the wheat network. Computers and Electronics in Agriculture, 168, 105095.
Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191). Springer, Berlin, Heidelberg.
Jarboui, B., Derbel, H., Hanafi, S., &Mladenović, N. (2013). Variable neighborhood search for location routing. Computers & Operations Research, 40(1), 47-57.
Kamboj, V. K., Bath, S. K., & Dhillon, J. S. (2016). Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Computing and Applications, 27(5), 1301-1316.
Karp, R. M. (1972). Reducibility among combinatorial problems. In complexity of computer computations (pp. 85-103). Springer, Boston, MA.
Khalilpourazari, S., & Mohammadi, M. (2018). A new exact algorithm for solving single machine scheduling problems with learning effects and deteriorating jobs. arXiv preprint arXiv:1809.03795.
Khalilpourazari, S., & Pasandideh, S. H. R. (2019). Sine–cosine crow search algorithm: theory and applications. Neural Computing and Applications, 1-18.
Khalilpourazari, S., &Mohammadi, M. (2016). Optimization of closed-loop Supply chain network design: a Water Cycle Algorithm approach. In Industrial Engineering (ICIE), 2016 12th International Conference on (pp. 41-45). IEEE.
Khalilpourazari, S., Mirzazadeh, A., Weber, G. W., & Pasandideh, S. H. R. (2019). A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process. Optimization.
Khalilpourazari, S., Naderi, B., & Khalilpourazary, S. (2020). Multi-Objective Stochastic Fractal Search: a powerful algorithm for solving complex multi-objective optimization problems. Soft Computing, 24(4), 3037-3066.
Khalilpourazari, S., Pasandideh, S. H. R., & Niaki, S. T. A. (2019). Optimizing a multi-item economic order quantity problem with imperfect items, inspection errors, and backorders. Soft Computing, 23(22), 11671-11698.
Khalilpourazari, S., Soltanzadeh, S., Weber, G. W., & Roy, S. K. (2020). Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Annals of Operations Research, 289(1), 123-152.
Khalilpourazari, S., Teimoori, S., Mirzazadeh, A., Pasandideh, S. H. R., & Ghanbar Tehrani, N. (2019). Robust Fuzzy chance constraint programming for multi-item EOQ model with random disruption and partial backordering under uncertainty. Journal of Industrial and Production Engineering, 36(5), 276-285.
Komaki, G. M., &Kayvanfar, V. (2015). Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. Journal of Computational Science, 8, 109-120.
Lashine, S. H., Fattouh, M., & Issa, A. (2006). Location/allocation and routing decisions in supply chain network design. Journal of Modelling in Management, 1(2), 173-183.
Lin, C. K. Y., & Kwok, R. C. W. (2006). Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data. European Journal of Operational Research, 175(3), 1833-1849.
Marinakis, Y., &Marinaki, M. (2008). A particle swarm optimization algorithm with path relinking for the location routing problem. Journal of Mathematical Modelling and Algorithms, 7(1), 59-78.
Martínez-Salazar, I. A., Molina, J., Ángel-Bello, F., Gómez, T., & Caballero, R. (2014). Solving a bi-objective transportation location routing problem by metaheuristic algorithms. European Journal of Operational Research, 234(1), 25-36.
Manavizadeh, N., Farrokhi-Asl, H., W.T. Lim, S. (2020). A New Mathematical Model for the Green Vehicle Routing Problem by Considering a Bi-Fuel Mixed Vehicle Fleet. Journal of Optimization in Industrial Engineering, 13(2), 165-183.
Melechovský, J., Prins, C., & Calvo, R. W. (2005). A metaheuristic to solve a location-routing problem with non-linear costs. Journal of Heuristics, 11(5-6), 375-391.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106-119.
Mohammadi, M., & Khalilpourazari, S. (2017, February). Minimizing makespan in a single machine scheduling problem with deteriorating jobs and learning effects. In Proceedings of the 6th International Conference on Software and Computer Applications (pp. 310-315).
Pasandideh, S. H. R., & Khalilpourazari, S. (2018). Sine cosine crow search algorithm: a powerful hybrid Meta heuristic for global optimization. arXiv preprint arXiv:1801.08485.
Peng, y., & Bai, L. (2006, October). An integrated optimization problem in logistics and the PSO solution. In Service Systems and Service
Management, 2006 International Conference on (Vol. 2, pp. 965-970). IEEE.
Precup, R. E., David, R. C., &Petriu, E. M. (2017). Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Transactions on Industrial Electronics, 64(1), 527-534.
Prins, C., Prodhon, C., & Calvo, R. W. (2006). Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4OR, 4(3), 221-238.
Samani, M. R. G., Hosseini-Motlagh, S. M., & Ghannadpour, S. F. (2019). A multilateral perspective towards blood network design in an uncertain environment: Methodology and implementation. Computers & Industrial Engineering, 130, 450-471.
Sharma, Y., &Saikia, L. C. (2015). Automatic generation control of a multi-area ST–Thermal power system using Grey Wolf Optimizer algorithm based classical controllers. International Journal of Electrical Power & Energy Systems, 73, 853-862.
Song, X., Tang, L., Zhao, S., Zhang, X., Li, L., Huang, J., & Cai, W. (2015). Grey Wolf Optimizer for parameter estimation in surface waves. Soil Dynamics and Earthquake Engineering, 75, 147-157.
Sulaiman, M. H., Mustaffa, Z., Mohamed, M. R., &Aliman, O. (2015). Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Applied Soft Computing, 32, 286-292.
Ting, C. J., & Chen, C. H. (2013). A multiple ant colony optimization algorithm for the capacitated location routing problem. International Journal of Production Economics, 141(1), 34-44.
Tuzun, D., & Burke, L. I. (1999). A two-phase tabu search approach to the location routing problem. European journal of operational research, 116(1), 87-99.
Wang, X., Sun, X., & Fang, Y. (2005, October). A two-phase hybrid heuristic search approach to the location-routing problem. In Systems, Man and Cybernetics, 2005 IEEE International Conference on (Vol. 4, pp. 3338-3343). IEEE.
Wu, T. H., Low, C., & Bai, J. W. (2002). Heuristic solutions to multi-depot location-routing problems. Computers & Operations Research, 29(10), 1393-1415.
Zitzler, E. (1999). Evolutionary algorithms for multi-objective optimization: Methods and applications (Vol. 63): Citeseer.
Zitzler, E., & Thiele, L. (1998, September). Multi-objective optimization using evolutionary algorithms—a comparative case study. In international conference on parallel problem solving from nature (pp. 292-301). Springer, Berlin, Heidelberg.
Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.