Factors Affecting the Efficiency of Hydraulic Flushing in Storm System for Sedimentation Control: A Review
Subject Areas : EconomicsGeok Teng Leong 1 , Charles Hin Joo Bong 2
1 - Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
2 - Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, MALAYSIA
Keywords:
Abstract :
Ab Ghani, A. (1993). Sediment transport in sewers [Doctoral dissertation, University of Newcastle upon Tyne, UK].
Anbari, M. J., Tabesh, M., & Roozbahani, A. (2017). Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks. Journal of Environmental Management, 190, 91–101. https://doi.org/10.1016/j.jenvman.2016.12.052
ASCE & WEF (1992). Design and Construction of Urban Stormwater Management Systems. American Society of Civil Engineers. https://doi.org/10.1061/9780872628557
Bertrand-Krajewski, J.-L. (2008). Flushing urban sewers until the beginning of the 20th century. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Bertrand-Krajewski, J.-L., Bardin, J.-P., Gibello, C., & Laplace, D. (2003). Hydraulics of a sewer flushing gate. Water Science and Technology, 47(4), 129–136. https://doi.org/10.2166/wst.2003.0237
Bertrand-Krajewski, J.-L., Campisano, A., Creaco, E., & Modica, C. (2005). Experimental analysis of the Hydrass flushing gate and field validation of flush propagation modelling. Water Science and Technology, 51(2), 129–137. https://doi.org/10.2166/wst.2005.0040
Bong, C. H. J., Lau, T. L., & Ab Ghani, A. (2013a). Hydraulics characteristics of tipping sediment flushing gate. Water Science and Technology, 68(11). https://doi.org/10.2166/wst.2013.498
Bong, C. H. J., Lau, T. L., & Ghani, A. A. (2013b). Verification of equations for incipient motion studies for a rigid rectangular channel. Water Science and Technology, 67(2). https://doi.org/10.2166/wst.2012.580
Bong, C. H. J., Lau, T. L., & Ab. Ghani, A. (2014). Sediment size and deposition characteristics in Malaysian urban concrete drains - a case study of Kuching City. Urban Water Journal, 11(1). https://doi.org/10.1080/1573062X.2012.750371
Bong, C. H. J., Lau, T. L., & Ab. Ghani, A. (2016). Potential of tipping flush gate for sedimentation management in open stormwater sewer. Urban Water Journal, 13(5). https://doi.org/10.1080/1573062X.2014.994002
Bong, C. H. J., Lau, T. L., & Ab Ghani, A. (2017). Duration of hydraulic flushing and its effect on sediment bed movement. 37th IAHR World Congress, Kuala Lumpur, Malaysia.
Bong, C. H. J., Lau, T. L., & Ghani, A. A. (2013b). Verification of equations for incipient motion studies for a rigid rectangular channel. Water Science and Technology, 67(2). https://doi.org/10.2166/wst.2012.580
Campisano, A., Creaco, E., & Modica, C. (2004). Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits. Journal of Hydrology, 299(3), 324–334. https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.08.009
Campisano, A., Creaco, E., & Modica, C. (2007). Dimensionless Approach for the Design of Flushing Gates in Sewer Channels. Journal of Hydraulic Engineering, 133(8), 964–972. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(964)
Campisano, A., Creaco, E., & Modica, C. (2008). Laboratory investigation on the effects of flushes on cohesive sediment beds. Urban Water Journal, 5(1), 3–14. https://doi.org/10.1080/15730620701726259
Campisano, A., Modica, C., Creaco, E., & Shahsavari, G. (2019). A model for non-uniform sediment transport induced by flushing in sewer channels. Water Research, 163, 114903. https://doi.org/https://doi.org/10.1016/j.watres.2019.114903
Crabtree, R. W. (1989). Sediments in Sewers. Water and Environment Journal, 3(6), 569–578. https://doi.org/https://doi.org/10.1111/j.1747-6593.1989.tb01437.x
Creaco, E., & Bertrand-Krajewski, J.-L. (2007). Modelling the flushing of sediments in a combined sewer. Novatech, Lyon, France.
Dettmar, J. (2007). A new planning procedure for sewer flushing. Novatech, Lyon, France.
Dettmar, J., Rietsch, B., & Lorenz, U. (2002). Performance and operation of flushing devices - results of a field and laboratory study. 9th International Conference on Urban Drainage, 1–10.Portland, Oregon, USA.
Fan, C.-Y., Field, R., Pisano, W. C., & Barsanti, J. (2001). Sewer and tank flushing for sediment, corrosion, and pollution control. Journal of Water Resources Planning and Management, 127(3), 194–201.
Gendreau, N., le Guennec, B., Poinot-Chazal, J. P., & Sechet, P. (1993). Sediment motion under flood wave - use of partial release of stored water by a weir. 6th International Conference on Urban Storm Drainage, 760–765.
Guo, Q., Fan, C.-Y., Raghaven, R., & Field, R. (2004). Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing. Journal of Hydraulic Engineering, 130(5), 463–466. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(463)
Ip, W. C., Hu, B. Q., Wong, H., & Xia, J. (2009). Applications of grey relational method to river environment quality evaluation in China. Journal of Hydrology, 379(3–4), 284–290. https://doi.org/10.1016/j.jhydrol.2009.10.013
Jean, M.-È., Duchesne, S., Pelletier, G., & Pleau, M. (2018). Selection of rainfall information as input data for the design of combined sewer overflow solutions. Journal of Hydrology, 565, 559–569. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.08.064
Korving, H., van Noortwijk, J. M., van Gelder, P. H. A. J. M., & Clemens, F. H. L. R. (2009). Risk-based design of sewer system rehabilitation. Structure and Infrastructure Engineering, 5(3), 215–227. https://doi.org/10.1080/15732470601114299
Liu, C., Lv, W., Liu, Q., Zhou, J., Wang, Y., Zhang, X., & Zhou, J. (2021). Analysis and calculation of sediment scouring rate at different locations of storm sewer. Water Science and Technology, 84(6), 1340–1353. https://doi.org/10.2166/wst.2021.334
Lorenzen, A., Ristenpart, E., & Pfuhl, W. (1996). Flush cleaning of sewers. Water Science and Technology, 33(9), 221–228. https://doi.org/10.1016/0273-1223(96)00390-3
McDermott, R. E., Mikulak, R. J., & Beauregard, M. R. (2008). The Basics of FMEA (2nd ed.). CRC Press.
Meyer-Peter, E., & Muller, R. (1948). Formulas for bed-load transport. 2nd Congress of the International Association of Hydraulic Research, Stockholm, Sweden.
Montes, C., Kapelan, Z., & Saldarriaga, J. (2021). Predicting non-deposition sediment transport in sewer pipes using Random forest. Water Research, 189. https://doi.org/10.1016/j.watres.2020.116639
Montes, C., Ortiz, H., Vanegas, S., Kapelan, Z., Berardi, L., & Saldarriaga, J. (2022). Sediment transport prediction in sewer pipes during flushing operation. Urban Water Journal, 19(1), 1–14. https://doi.org/10.1080/1573062X.2021.1948077
Nalluri, C., & Alvarez, E. M. (1992). The Influence of Cohesion on Sediment Behaviour. Water Science and Technology, 25(8), 151–164. https://doi.org/10.2166/wst.1992.0189
Penn, R., Schuetze, M., Jens, A., & Friedler, E. (2018). Tracking and simulation of gross solids transport in sewers. Urban Water Journal, 15(6), 584–591. https://doi.org/10.1080/1573062X.2018.1529190
Pisano, W. C., O’Riordan, O. C., Ayotte, F. J., Barsanti, J. R., & Carr, D. L. (2003). Automated Sewer and Drainage Flushing Systems in Cambridge, Massachusetts. Journal of Hydraulic Engineering, 129(4), 260–266. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(260)
Ristenpart, E. (1998). Solids transport by flushing of combined sewers. Water Science and Technology, 37(1), 171–178. https://doi.org/10.2166/wst.1998.0042
Safari, M. J. S., Mohammadi, M., & Gilanizadehdizaj, G. (2014). On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels. Journal of Hydrology and Hydromechanics, 62(1), 75–81. https://doi.org/10.2478/johh-2014-0003
Schaffner, J., & Steinhard, J. (2006). Numerical investigation of the self-acting flushing system HydroFlush GS in Frankenberg/Germany. 2th Conference on Sewer Operation and Maintenance, Vienna, Austria.
Schaffner, J., & Steinhardt, J. (2013). Numerical investigations on the influence of hydraulic boundary conditions on the efficiency of sewer flushing. 7th International Conference on Sewer Processes and Networks, Sheffield, UK https://www.researchgate.net/publication/280567477
Schellart, A. N. A., Tait, S. J., & Ashley, R. M. (2010). Estimation of Uncertainty in Long-Term Sewer Sediment Predictions Using a Response Database. Journal of Hydraulic Engineering, 136(7), 403–411. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000193
Shahsavari, G., Arnaud-Fassetta, G., Bertilotti, G. R., Campisano, A., & Riou, F. (2015). Bed evolution under one-episode flushing in a trunk sewer in Paris, France. International Journal of Civil and Environmental Engineering, 9(7), 759–768. https://www.researchgate.net/publication/276275265
Shahsavari, G., Arnaud-Fassetta, G., & Campisano, A. (2017). A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits. Water Research, 118, 59–69. https://doi.org/https://doi.org/10.1016/j.watres.2017.04.026
Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Doctoral dissertation, Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau].
Shirazi, R. H. S. M., Bouteligier, R., Willems, P., & Berlamont, J. (2008). Preliminary results of investigating proper location of flushing tanks in combined sewer networks for optimum effect. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Sousa, V., Matos, J. P., & Matias, N. (2014). Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition. Automation in Construction, 44, 84–91. https://doi.org/https://doi.org/10.1016/j.autcon.2014.04.004
Swamee, P. K., & Sharma, A. K. (2013). Optimal design of a sewer line using Linear Programming. Applied Mathematical Modelling, 37(6), 4430–4439. https://doi.org/https://doi.org/10.1016/j.apm.2012.09.041
Todeschini, S., Ciaponi, C., & Papiri, S. (2008). Experimental and numerical analysis of erosion and sediment transport of flushing waves. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Walski, T., Falco, J., McAloon, M., & Whitman, B. (2011). Transport of large solids in unsteady flow in sewers. Urban Water Journal, 8(3), 179–187. https://doi.org/10.1080/1573062X.2011.581298
Wu, Z., & Abdul-Nour, G. (2020). Comparison of Multi-Criteria Group Decision-Making Methods for Urban Sewer Network Plan Selection. CivilEng, 1(1), 26–48. https://doi.org/10.3390/civileng1010003
Yang, H., Zhu, D. Z., Zhang, Y., & Zhou, Y. (2019). Numerical investigation on bottom shear stress induced by flushing gate for sewer cleaning. Water Science and Technology, 80(2), 290–299. https://doi.org/10.2166/wst.2019.269
Yu, D., Dian, L., Hai, Y., Randall, M. T., Liu, L., Liu, J., Zhang, J., Zheng, X., & Wei, Y. (2022). Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow. Journal of Environmental Management, 303, 114268. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.114268