Measurement of toxic elements in infant food supplements marketed in Iran (short comunication)
Subject Areas : Food Science and TechnologyM. A. Mehrnia 1 , آیگین Bashti 2 , F. Salehi 3
1 - Assistant Professor, Department of Food Science and Technology, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
2 - Assistant Professor, Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
3 - Assistant Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
Keywords: Lead, Nickel, Infant Food, Tolerable daily intake, Heavy metals,
Abstract :
Due to similarities with breast-feeding, baby food is used as a partial replacement for babies between 6 to 12 months of age. In this study, five samples of famous infant food supplement consisting of three types from Ghoncheh company (rice with milk, wheat with milk, almond porridge) and two types from Nestle company (wheat and milk, and banana and wheat with milk) were prepared. Samples were digested with nitric acid and the concentrations of cadmium, lead, manganese, molybdenum and nickel were analyzed. In addition, the estimated daily intake (EDI) index for all samples was calculated and compared with tolerable daily intake (TDI) index. The minimum and maximum concentration of cadmium was found in the sample with rice + milk formula (40.3 µg/kg) and infant food supplements containing wheat + milk (58.0 µgr/kg), respectively. The amount of cadmium, lead, manganese, molybdenum and nickel were estimated in the range of 40.3-58.0 ppb, 31.85 ppb, 2.3-4.9 ppm, 417.9-518.8 ppb and 4479.1-6415.0 ppb, respectively. In was concluded that the amount of toxic elements in infant foods marketed in Iran were found below the maximum limit.
● Al Khalifa, A. and Ahmad, D. (2010). Determination of key elements by ICP-OES in commercially available infant formulae and baby foods in Saudi Arabia. Australian Journal of French Studies, 4 (7): 464–468.
● Atabey, E. (2005). Medical geology, Tmmob geology muhendisler odasi publisher, Anakara, page 194.
● Caballero, B. (2012). Encyclopedia of human nutrition. In: Allen, L.H. and Prentice, A. (Eds.). Academic Press, pp. 14–21.
● Castro, C.S.P.D., Arruda, A.F., Cunha, L.R.D., DeSouza, J.R., Braga, J.W.B. and Dórea, J.G. (2010). Toxic metals (Pb and Cd) and their respective antagonists (Ca and Zn) in infant formulas and milk marketed in Brasilia, Brazil. International Journal of Environmental Research and Public Health, 7(11): 4062–4077.
● Dabeka, R., Fouquet, A., Belisle, S. and Turcotte, S. (2011). Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions. Food Additives & Contaminants, 28(6): 744–53.
● Fox, L.J., Struik, P.C., Appleton, B.L. and Rule, J.H. (2008). Nitrogen phytoremediation by Water Hyacinth (Eichhornia crassipes (Mart.) Solms), Water, Air & Soil Pollution, 194: 199–207.
● Ghazban, F. (2002). Environmental Geology, First Edition, Tehran University Press [In Persian].
● Hajalilou, B. and Vosough, B. (2010). Medical Geology, Payam Noor University Press, Tehran. p. 255 [In Persian].
● Hawkins, N.M., Coffey, S., Lawson, M.S. and Delves, H.T. (1994). Potential aluminium toxicity in infants fed special infant formula. Journal of Pediatric Gastroenterology and Nutrition, 19(4): 377.
● Ikem, A., Nwankwoala, A., Odueyungbo, S., Nyavor, K. and Egiebor, N. (2002). Levels of 26 elements in infant formula from USA, UK, and Nigeria by microwave digestion and ICP-OES. Food Chemistry, 77 (4): 439–447.
● Kazi, T.G. and Jalbani, N. (2009). Determination of toxic elements in infant formula by using electrothermal atomic absorption spectrometer. Food and Chemistry and Toxicology, 47: 1425–1429.
● Ljung, K. and Palm, B. (2011). High concentration of essential and toxic elements in infant formula and infant foods. Food Chemistry, 127: 943–951.
● Mania, M., Wojciechowska-Mazurek, M., Starska, K., Rebeniak, M., Szynal, T., Strzelecka, A. et al. (2015). Toxic elements in commercial infant food, estimated dietary intake, and risk assessment in Poland. Polish Journal of Environmental Studies, 24(6): 2525–2536.
● Odhiambo, V.O., Wanjau, R., and Odundo, J.O. (2015). Toxic trace elements in different brands of milk infant formulae in Nairobi market, Kenya. African Journal of Food Science, 9(8): 437–440.
● Singh, H. (2005). Mycoremediation. A John Wiley & Sons, Inc., Publication, 283–285.
● Zand, N.and Babur, Z.C. (2011). Essential and trace elements content of commercial infant foods in UK. Food Chemistry, 128: 123–128.
_||_
● Al Khalifa, A. and Ahmad, D. (2010). Determination of key elements by ICP-OES in commercially available infant formulae and baby foods in Saudi Arabia. Australian Journal of French Studies, 4 (7): 464–468.
● Atabey, E. (2005). Medical geology, Tmmob geology muhendisler odasi publisher, Anakara, page 194.
● Caballero, B. (2012). Encyclopedia of human nutrition. In: Allen, L.H. and Prentice, A. (Eds.). Academic Press, pp. 14–21.
● Castro, C.S.P.D., Arruda, A.F., Cunha, L.R.D., DeSouza, J.R., Braga, J.W.B. and Dórea, J.G. (2010). Toxic metals (Pb and Cd) and their respective antagonists (Ca and Zn) in infant formulas and milk marketed in Brasilia, Brazil. International Journal of Environmental Research and Public Health, 7(11): 4062–4077.
● Dabeka, R., Fouquet, A., Belisle, S. and Turcotte, S. (2011). Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions. Food Additives & Contaminants, 28(6): 744–53.
● Fox, L.J., Struik, P.C., Appleton, B.L. and Rule, J.H. (2008). Nitrogen phytoremediation by Water Hyacinth (Eichhornia crassipes (Mart.) Solms), Water, Air & Soil Pollution, 194: 199–207.
● Ghazban, F. (2002). Environmental Geology, First Edition, Tehran University Press [In Persian].
● Hajalilou, B. and Vosough, B. (2010). Medical Geology, Payam Noor University Press, Tehran. p. 255 [In Persian].
● Hawkins, N.M., Coffey, S., Lawson, M.S. and Delves, H.T. (1994). Potential aluminium toxicity in infants fed special infant formula. Journal of Pediatric Gastroenterology and Nutrition, 19(4): 377.
● Ikem, A., Nwankwoala, A., Odueyungbo, S., Nyavor, K. and Egiebor, N. (2002). Levels of 26 elements in infant formula from USA, UK, and Nigeria by microwave digestion and ICP-OES. Food Chemistry, 77 (4): 439–447.
● Kazi, T.G. and Jalbani, N. (2009). Determination of toxic elements in infant formula by using electrothermal atomic absorption spectrometer. Food and Chemistry and Toxicology, 47: 1425–1429.
● Ljung, K. and Palm, B. (2011). High concentration of essential and toxic elements in infant formula and infant foods. Food Chemistry, 127: 943–951.
● Mania, M., Wojciechowska-Mazurek, M., Starska, K., Rebeniak, M., Szynal, T., Strzelecka, A. et al. (2015). Toxic elements in commercial infant food, estimated dietary intake, and risk assessment in Poland. Polish Journal of Environmental Studies, 24(6): 2525–2536.
● Odhiambo, V.O., Wanjau, R., and Odundo, J.O. (2015). Toxic trace elements in different brands of milk infant formulae in Nairobi market, Kenya. African Journal of Food Science, 9(8): 437–440.
● Singh, H. (2005). Mycoremediation. A John Wiley & Sons, Inc., Publication, 283–285.
● Zand, N.and Babur, Z.C. (2011). Essential and trace elements content of commercial infant foods in UK. Food Chemistry, 128: 123–128.