Fabrication and characterization of the Ti-6Al-4V/Mg scaffold
Subject Areas : Finite Element ModelingSeyed Kalantari 1 , Hossein Arabi 2 , Shamsodin Mirdamadi 3 , Seyed Mirsalehi 4
1 - Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran,Iran
2 - Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran,Iran
3 - Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran,Iran
4 - Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran,Iran
Keywords:
Abstract :
- Y. F. Zheng, X. N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports, 77, 2014, pp. 1-34.
- A. Pietak, P. Mahoney, G. J. Dias, M. P. Staiger, Bone-like matrix formation on magnesium and magnesium alloys, Journal of Materials Science: Materials in Medicine, 19, 2008, pp. 407-415.
- G. Ryan, A. Pandit, D. P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 2006,
pp. 2651-2670. - Y. Chen, B. Feng, Y. Zhu, J. Weng, J. Wang, X. Lu, Fabrication of porous titanium implants with biomechanical compatibility, Materials Letters, 63, 2009, pp. 2659-2661.
- S. W. Kim, H. D. Jung, M.-H. Kang, H.-E. Kim, Y.-H. Koh, Y. Estrin, Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer, Materials Science and Engineering: C, 33, 2013, pp. 2808-2815.
- M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A, 243, 1998, pp. 231-236.
- B. Arifvianto, J. Zhou, Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review, Materials, 7, 2014,
pp. 3588-3622. - G. Ryan, P. McGarry, A. Pandit, D. Apatsidis, Analysis of the mechanical behavior of a titanium scaffold with a repeating unit‐cell substructure, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90, 2009, pp. 894-906.
- Y. Oshida, Bioscience and bioengineering of titanium materials, Elsevier, 2010.
- S. N. Dezfuli, S. Sadrnezhaad, M. Shokrgozar, S. Bonakdar, Fabrication of biocompatible titanium scaffolds using space holder technique, Journal of Materials Science: Materials in Medicine, 23, 2012, pp. 2483-2488.
- J. Li, J. De Wijn, C. Van Blitterswijk, K. De Groot, Porous Ti6Al4V scaffolds directly fabricated by 3D fibre deposition technique: effect of nozzle diameter, Journal of Materials Science: Materials in Medicine, 16, 2005,
pp. 1159-1163. - N. Ayda, M. Alam, M. Ravindranath, Corrosion in titanium dental implants: literature review, The Journal of Indian prosthodonic society, 5, 2005, pp. 126-131.
- K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials, 2, 2009,
pp. 790-832. - H. Hermawan, Introduction to Metallic Biomaterials, in: Biodegradable Metals, Springer, 2012, pp. 1-11.
- W. F. Ng, K. Y. Chiu, F. T. Cheng, Effect of pH on the in vitro corrosion rate of magnesium degradable implant material, Materials Science and Engineering: C, 30, 2010, pp. 898-903.
- R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Progress and challenge for magnesium alloys as biomaterials, Advanced Engineering Materials, 10, 2008, B3-B14.
- H. Zreiqat, C. Howlett, A. Zannettino, P. Evans, G. Schulze‐Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium‐stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, Journal of biomedical materials research, 62, 2002, pp. 175-184.
- M. Nan, C. Yangmei, Y. Bangcheng, Magnesium metal—A potential biomaterial with antibone cancer properties, Journal of Biomedical Materials Research Part A, (2013).
- A. Yamamoto, S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Materials Science and Engineering: C, 29, 2009, pp. 1559-1568.
- G. Song, Control of biodegradation of biocompatable magnesium alloys, Corrosion Science, 49, 2007, pp. 1696-1701.
- A. F1580-01, Standard Specification for Titanium and Titanium-6 Aluminum-4 Vanadium Alloy Powders for Coatings of Surgical Implants
- T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity Biomaterials, 27, 2006, pp. 2907-2915.
- A. Mahboubi Soufiani, M. Enayati, F. Karimzadeh, Fabrication and characterization of nanostructured Ti6Al4V powder from machining scraps, Advanced Powder Technology, 21, 2010, pp. 336-340.
- I.-H. Oh, N. Nomura, N. Masahashi, S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia, 49, 2003, pp. 1197-1202.
- J. Bobyn, J. Miller, Features of biologically fixed devices, orthopaedic basic science. Am Acad Orthop Surg, 10, 1994, pp. 613-616.
- A. I. Itälä, H. O. Ylänen, C. Ekholm, K. H. Karlsson, H. T. Aro, Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits, Journal of biomedical materials research, 58, 2001, pp. 679-683.
- D. A. Robinson, R. W. Griffith, D. Shechtman, R. B. Evans, M. G. Conzemius, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonasaeruginosa and Staphylococcus aureus, Acta biomaterialia, 6, 2010, pp. 1869-1877.
- M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution Biomaterials, 30, 2009, pp. 2175-2179.
- H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, T. Aizawa, Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution, Materials Transactions(Japan), 42, 2001, pp. 1317-1321.
- L. Jonášová, F. A. Müller, A. Helebrant, J. Strnad, P. Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials, 25, 2004, pp. 1187-1194.
- S. Ibasco, F. Tamimi, R. Meszaros, D. L. Nihouannen, S. Vengallatore, E. Harvey, J.E. Barralet, Magnesium-sputtered titanium for the formation of bioactive coatings, Acta biomaterialia, 5, 2009, pp. 2338-2347.
- L. Xu, G. Yu, E. Zhang, F. Pan, K. Yang, In vivo corrosion behavior of Mg‐Mn‐Zn alloy for bone implant application, Journal of Biomedical Materials Research Part A, 83, 2007, pp. 703-711.