Numerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System
Subject Areas : Finite Element ModelingMina Alafzadeh 1 , Shahram Talebi 2 , Mojdeh Azizi 3
1 - Academic center for education, culture and research (ACECR), Yazd branch
2 - Department of Mechanical Engineering, Yazd university- Yazd, Iran
3 - Academic center for education, culture and research (ACECR), Yazd branch
Keywords:
Abstract :
[1] Z. Wilczewska, K. Niemirowics, K. H. Markiewicz, H. Car, “ Nanoparticles as drug delivery systems”, Pharmacol. Rep., Vol. 64, 2012, pp. 1020-1037.
[2] S. R. Mudshinge, A. B. Deore, S. Patil, Ch. M. Bhalgat, “Nanoparticles: Emerging carriers for drug delivery”, Sau. Pharm., Vol. 19, 2011, pp. 129-141.
[3] S. A. Kulkarni, S. S. Feng, “Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery”, Pharm. Res., Vol. 30, 2013, pp. 2512-2522.
[4] S. Shukla, F. J. Eber, A. S. Nagarajan, N. A. Difranco, N. Schmidt, A. M. Wen, S. Eiben, R. M. Twyman, C. Wege, N. F. Steinmetz, “ The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods”, Adv. Healthc. Mater, Vol. 4, 2015, pp. 874-882.
[5] Huang, P. J. Butler, S. Tong, H. S. Muddana, G. Bao, S. Zhang, “ Substrate stiffness regulates cellular uptake of nanoparticles”, Nano Lett., Vol. 4, 2013, pp. 1611-1615.
[6] X. He, L. S. Luo, “Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation”, Phys. Rev. E, Vol.56, 1997, pp.6811-6817.
[7] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University press, 2001.
[8] T. S. Lee, H. Huang, Ch. Shu, “An axisymmetric incompressible lattice BGK model for simulation of the pulsatile flow in a circular pipe”, Int. J. Numer. Methods Fluids, Vol.49, 2005, pp.99-116.
[9] X. He, Q. Zou, “Analysis and boundary condition of the lattice Boltzmann BGK model with two velocity components”, J. Stat. Phys., Vol.87, 1995, pp.115-136.
[10] M. Bouzidi, M. Firdaouss., P. Lallemand, “Momentum transfer of Boltzmann-lattice fluid with boundaries”, Phys. Fluids, vol.13, 2001, pp.3452-3459.
[11] G. Karniadakis, A. Beskok, N. Aulru, Microflows and nanoflows fundamentals and simulation, Springer, 2005.
[12] E. Cunningham, On the velocity of steady fall of spherical particles through fluid medium, Proc. R. Soc. Lond. A83, 1910, pp. 357-365.
[13] N. Davies, “Definite equation for the fluid resistance of spheres”, Proc. Phys. Soc., Vol. 57, 1945.
[14] KoohyarVahidkhah, Nasser Fatouraee, “Numerical simulation of red blood cell
[15] behavior in astenosed arteriole using the immersed boundary- Lattice Boltzmann method”,Int. J. Numer. Meth.Biomed.Eng.., Vol. 28, 2011, pp.239-256.
[16] O. Filippova, D. Hanel, “Grid refinement for lattice- BGK models”, J. Comput. Phys, vol. 147, 1998, pp. 219-228.
[17] F. W. White, Viscous fluid flow, McGraw-Hill, New York, 2006.
[18] S. K. Stefanov, R. W. Barber, M. Ota, D. R. Emerson, “Comparison beween Navier-Stokes and DSMC calculations for low Reynolds number slip flow past a confined micro sphere”, 24th Symposium of Rarefied Gas Dynamics, American institute of physics,2005.
[19] C.Guyton, J. E. Hall, Textbook of medical physiology, Elsevier Saunders, 2006.
[20] Moshfegh, M. Shams, G. Ahmadi, R. Ebrahimi, “A novel surface-slip correction for microparticles motion”, Collids and Surfaces A, Vol. 345, 2009, pp.321-329.
[21] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, “ Shape effects of filaments versus spherical particles in flow and drug delivery”, Nat Nanotechnol, Vol. 2, 2007, pp. 249-255.