The effect of mechanical activation on the kinetic and formation mechanism of a niobium aluminide based nanocomposite
Subject Areas : Materials synthesis and charachterizationHossein Mostaan 1 , Mahdi Rafiei 2 , Fathallah Karimzadeh 3
1 - Arak University
2 - Islamic Azad University, Najaf Abad Branch
3 - Isfahan University of Technology
Keywords:
Abstract :
[1] C. Koch, "Intermetallic matrix composites prepared by mechanical alloying-a review", Mater. Sci. Eng., A, Vol. 244, 1998, pp. 39–48.
[2] Y. Murayama, S. Hanada, "Solid solution hardening of Nb3Al alloys containing tungsten, molybdenum and tantalum", Scr. Mater., Vol. 37, 1997, pp. 949–953.
[3] Y. Abe, S. Hanada, S. Saito, K. Hirano, N. Kobayashi, "Compositions at Nb3Al Phase boundaries at 1873K in the Nb-Al binary phase diagram", Scr. Metall. Mater., Vol. 32, 1995, pp. 27–30.
[4] S. Saito, S. Hanada, K. Ikeda, A. Nagata, K. Noto, "Effect of the layer thickness on Nb3Al superconducting wires", Mater. Sci. Eng., B: B, Vol. 7, 1990, pp. 31–36.
[5] S.K. Dolukhanyan, O.P. Ter Galstyan, A.G. Aleksanyan, A.G. Hakobyan, N.L. Mnatsakanyan, V.S. Shekhtman, "Study of the formation of niobium aluminides in the hydride cycle", Russ. J. Phys. Chem. B, Vol. 9, pp. 2015, 702–709.
[6] C. Milanese, F. Maglia, A. Tacca, U. Anselmi-Tamburini, C.P. Zanotti, iuliani, "Ignition and reaction mechanism of Co–Al and Nb–Al intermetallic compounds prepared by combustion synthesis", J. Alloys Compd., Vol. 421, 2006, pp. 156–162.
[7] V. Gauthier, C. Josse, F. Bernard, E. Gaffet, J. Larpin, "Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process", Mater. Sci. Eng., A, Vol. 265, 1999, pp. 117–128.
[8] Y. Yang, I. Baker, "The influence of vacancy concentration on the mechanical behavior of Fe-40Al", Intermetallics, Vol. 6, 1998, pp. 167–175.
[9] M. Muñoz-Morris, C. Garcia Oca, D. Morris, "Microstructure and room temperature strength of Fe-40Al containing nanocrystalline oxide particles", Acta Mater., Vol. 51, 2003, pp. 5187–5197.
[10] V. Gauthier, F. Bernard, E. Gaffet, C. Josse, J. Larpin, "In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-temperature synthesis reaction", Mater. Sci. Eng., A, Vol. 272, pp. 334–341, 1999.
[11] M. Shirani, A. Saidi, M. Kasiri, A. Shirani, "Fabrication of TiC particulate reinforced Ni-50Fe super alloy matrix composite powder by mechanical alloying", J. Adv. Mater. Proc., Vol. 1, 2013, pp. 53–63.
[12] S.Z. Anvari, F. Karimzadeh, M.H. Enayati, "Synthesis and characterization of NiAl–Al2O3 nanocomposite powder by mechanical alloying", J. Alloys Compd., Vol. 477, 2009, pp. 178–181.
[13] M. Rafiei, M.H. Enayati, F. Karimzadeh, "Mechanochemical synthesis of (Fe,Ti)3Al–Al2O3 nanocomposite", J. Alloys Compd., Vol. 488, 2009, pp. 144–147.
[14] T. Mousavi, F. Karimzadeh, M.H. Abbasi, "Mechanochemical assisted synthesis of NiTi intermetallic based nanocomposite reinforced by Al2O3", J. Alloys Compd., Vol. 467, 2099, pp. 173–178.
[15] N. Forouzanmehr, F. Karimzadeh, M.H. Enayati, "Synthesis and characterization of TiAl/α-Al2O3 nanocomposite by mechanical alloying", J. Alloys Compd., Vol. 478, 2009, pp. 257–259.
[16] G. Williamson, W. Hall, "X-ray line broadening from filed aluminium and wolfram", Acta Metall., Vol. 1, 1953, pp. 22–31.
[17] C. Suryanarayana, "Mechanical alloying and milling", Prog. Mater Sci., Vol. 46, 2001, pp. 1–184.
[18] T.S. Dyer, Z.A. Munir, "The synthesis of nickel aluminides by multilayer self-propagating combustion", Metall. Mater. Trans. B, Vol. 26, 1995, pp. 603–610.
[19] H. Mostaan, F. Karimzadeh, M.H. Abbasi, "Investigation of in-situ synthesis of NbAl3/Al2O3 nanocomposite by mechanical alloying and its formation mechanism", J. Alloys Compd., Vol. 503, 2010, pp. 294–298.
[20] N.J. Welham, "Mechanical activation of the solid-state reaction between Al and TiO2", Mater. Sci. Eng., A, Vol. 255, 1998, pp. 81–89.
[21] A.A. Joraid, A.A. Abu-Sehly, M.A. El-Oyoun, S.N. Alamri, "Nonisothermal crystallization kinetics of amorphous Te51.3As45.7Cu3", Thermochim. Acta, Vol. 470, 2008, pp. 98–104.
[22] M.J. Starink, "Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral", J. Mater. Sci., Vol. 42, 2006, pp. 483–489.