A New Classical-Quantum Model for Comparing the Magnetization of Ferromagnetic and Superparamagnetic Nanoparticles During Magnetic Hyperthermia
Subject Areas : Bio MaterialsMaryam Bahmanpour 1 , Hamid Ghayour 2
1 - Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 - Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords:
Abstract :
[1] S.h. Noh, S. Ho Moon, T. Shin, Y. Lim, J. Cheon, Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications, Nano Today13 (2017) 61–76.
[2] N.D. Thorat, R. Bohar, H.M. Yadav, S.V. Otari, S.H. Pawar, S.A.M. Tofail, ultifunctional Magnetic Nanostructures for Cancer Hyperthermia Therapy, Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016(1) 589–612.
[3] S. Laurent, S. Dutz, U. O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface, Science, 166(2011) 8-23.
[4] M. Phuong Nguyen, M. Hoang Nguyen, J. Kim, D. Kim, Encapsulation of superparamagnetic iron oxide nanoparticles with polyaspartamide biopolymer for hyperthermia therapy, European Polymer Journal, 1225(2020) 109396.
[5] Z. Nemati, S. M. Salili, J. Alonso, A. Ataie, H. Srikanth, Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: Does size matter?, Journal of Alloys and Compounds, 71415 (2017) 709-714.
[6] A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 201(1999) 413-419.
[7] A. U. Rashid, P. Southern, J. A. Darr, S. Awan, S. Manzoor, Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications, Journal of Magnetism and Magnetic Materials 344 (2013)-134-139.
[8] B. E. Kashevsky, S. B. Kashevsky, V.S.Korenkov, Y.P. Istomin, T. I. Terpinskaya, V.S.Ulashchik, Magnetic hyperthermia with hard-magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 380 (2015) 335–340
[9] A. Najafinezhad, M.Abdellahi, S. Saber-Samandari, H. Ghayour Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications, Journal of Alloys and Compounds 734 (2018), 290-300.
[10] H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, A. Khandan, Hyperthermia application of zinc doped nickel ferrite nanoparticles Journal of Physics and Chemistry of Solids 111(2018), 464- 472.
[11] M. Abdellahi, Z. Aslani, N. Nazemi, S. Jabbrzare Introducing ZrFe2O5 nanopowders for hyperthermia applications Chinese journal of physics 56 (3), 880-885.
[12] EL. Verde, GT. Landi, JA. Gomes, MH. Sousa, AF. Bakuzis. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 2012(111)123902-1–8.
[13] J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization, Journal of Applied Physics 109 (2011)083921.
[14] Nicola A. Spaldin, Magnetic Materials, Fundamentals and Applications, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, 2010.