Influence of Power Law Distribution with Pressure on the Frequencies of Supported Functionally Graded Material Cylindrical Shell with C-SL and F-SS Boundary Conditions
Subject Areas : Materials synthesis and charachterization
1 - Department of Mechanical Engineering, Andimeshk Branch, Islamic Azad University
Keywords:
Abstract :
[1] Sechler, E.E., 1974. Thin-shell structures theory experiment and design. Englewood Cliffs, NJ: Prentice-Hall, California.
[2] Yan, J., Li, T.Y., Liu, T.G. & Liu, J.X. 2006. Characteristics of the vibrational power flow propagation in a submerged periodic ring-stiffened cylindrical shell. Applied Acoustics. (67): 550-569.
[3] Wang, R.T. & Lin, Z.X. 2006. Vibration analysis of ring-stiffened cross-ply laminated cylindrical shells. Jouranl of Sound and Vibration. (295): 964-987.
[4] Pan, Z., Li, X. & Ma, J. A. 2008. Study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions. Jouranl of Sound and Vibration. (314): 330-342.
[5] Gan, L., Li, X. & Zhang, Z. 2009. Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach. Jouranl of Sound and Vibration. (326): 633-646.
[6] Zhou, X. 2012. Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid. Acta Mechanica Solida Sinica. (25): 168-176.
[7] Qu, Y., Chen, Y., Long, X., Hua, H. & Meng, G. 2013. A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations. European Journal of Mechanics endash; A/Solids. (37): 200-215.
[8] Love, A.E.H. 1944. A treatise on the mathematical theory of elasticity [M]. New York: Dover Publication.
[9] Leissa, A.W. 1993. Vibration of shells. NASA SP-288, 1973; Reprinted by Acoustical Society of America, America Institute of Physics.
[10] Blevins, R.D. 1979. Formulas for natural frequency and mode shape. Van Nostrand Reinhold, New York.
[11] Soedel, W. 1980. A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions. Jouranl of Sound and Vibration. (70): 309-317.
[12] Chung, H. 1981. Free vibration analysis of circular cylindrical shells. Jouranl of Sound and Vibration. (74): 331-359.
[13] Reddy, J.N. 2004. Mechanics of laminated composite plates and shells. 2nd edn. CRC Press, New York.
[14] Forsberg, K. 1964. Influence of boundary conditions on modal characteristics of cylindrical shells. AIAA Journal. (2): 182-189.
[15] Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. & Ford, R.G. 1999. Functionally graded materials: design, processing and applications, Kluwer Academic Publishers, London.
[16] Loy, C.T., Lam, K.Y. & Reddy, J.N. 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences. (41): 309–324.
[17] Patel, B.P., Gupta, S.S., Loknath, M.S. & Kadu, C.P. 2005. Free vibration analysis of functionally graded elliptical cylindrical shells using higher order theory. Composite Structures. (69): 259–270.
[18] Zhi, C. & Hua, W. 2007. Free vibration of FGM cylindrical shells with holes under various boundary conditions. Jouranl of Sound and Vibration. (306): 227–237.
[19] Arshad, S. H., Naeem, M. N., & Sultana, N. 2007. Frequency analysis of functionally graded material cylindrical shells with various volume fraction laws. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. (221): 1483–1495.
[20] Shah, A.G., Mahmood, T. & Naeem, M.N. 2009. Vibrations of FGM thin cylindrical shells with exponential volume fraction law. Applied Mathematics and Mechanics (English Edition). (5): 607–615.
[21] Hosseini-Hashemi, sh., Ilkhani,M.R and Fadaee. M. Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell. International Journal of Mechanical Sciences 76 (2013) 9–20.
[22] Amirabadi, H., Farhatnia, F., Eftekhari, S.A., Hosseini-Ara, R. 2020. Free vibration analysis of rotating functionally graded GPL-reinforced truncated thick conical shells under different boundary conditions. Mechanics Based Design of Structures and Machines, Published online: 30 Sep 2020. pp. 1-32.
[23] Mohamadi, B., Eftekhari, S.A., Toghraie, D. 2020. Numerical investigation of nonlinear vibration analysis for triple-walled carbon nanotubes conveying viscous fluid. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 30 No. 4, pp. 1689-1723.
[24]Amirabadi, H., Farhatnia, F., Eftekhari, S.A., Hosseini-Ara, R. 2021. Wave propagation in rotating functionally graded GPL-reinforced cylindrical shells based on the third-order shear deformation theory. Waves in Random and Complex Media, Published online: 03 Feb 2021.
[25] Soedel, W. 2004. Vibration of shells and plates. 3rd edn. Marcel Dekker Inc, New York.
[26] Reddy, J.N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis, 2nd ed. CRC Press, Boca Raton.