Fabrication of Na-W Co-Doped Exfoliated G-C3N4 Nanoparticles for Methylene Blue Removal
Subject Areas : Composite materialsMohammad Javad Hakimi-Tehrani 1 , Seyed Ali Hassanzadeh Tabrizi 2 , Narjes Koupaei 3 , Ali Saffar 4 , Mahdi Rafiei 5
1 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
5 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Keywords:
Abstract :
[1] S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, "Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties ", J. Mol. Liq., Vol. 337, 2021, pp. 116405.
[2] X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, "Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants", Crit. Rev. Environ. Sci. Technol., Vol. 51, 2021, pp. 751–790.
[3] J. Fu, J. Yu, C. Jiang, B. Cheng, "g‐C3N4‐Based heterostructured photocatalysts", Adv. Energy. Mater. Vol 8, 2018, pp. 1701503.
[4] J. Wen, J. Xie, X. Chen, X. Li, "A review on g-C3N4-based photocatalysts", Appl. Surf. Sci., Vol. 391, 2017, pp. 72–123.
[5] S.A. Hassanzadeh-Tabrizi, C.C. Nguyen, T.O. Do, "Synthesis of Fe2O3/Pt/Au nanocomposite immobilized on g-C3N4 for localized plasmon photocatalytic hydrogen evolution", Appl. Surf. Sci., Vol 489, 2019, pp. 741–754.
[6] Y. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, "Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst", Chem. Eng. J., Vol. 370, 2019, pp. 287–294.
[7] S. Ghattavi, A. Nezamzadeh-Ejhieh, "A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers", Compos. Part. B. Eng., Vol. 183, 2020, pp. 107712.
[8] M. Wu, H. Lv, T. Wang, Z. Ao, H. Sun, C. Wang, T. An, S. Wang, "Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants", Catal. Today., Vol. 315, 2018, pp. 205–212.
[9] H. Méndez, G. Heimel, A. Opitz, K. Suer, P. Barkowski, M. Oehzelt, J. Soeda, T. Okamoto, J. Takeya, J.B. Arlin, J.Y. Balandier, Y. Geerts, N. Koch, I. Salzmann, "Doping of organic semiconductors: impact of dopant strength and electronic coupling", Angew. Chemie., Vol. 125, 2013, pp. 7905–7909.
[10] S. Bera, D.I. Won, S.B. Rawal, H.J. Kang, W.I. Lee, "Design of visible-light photocatalysts by coupling of inorganic semiconductors", Catal. Today., Vol. 335, 2019, pp. 3–19.
[11] A.G. Akerdi, S.H. Bahrami, "Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: a review", J. Environ. Chem. Eng., Vol. 7, 2019, pp. 103283.
[12] J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, "Sulfur-doped g-C3N4/TiO2 Z-scheme heterojunction photocatalyst for Congo Red photodegradation", Chinese. J. Catal., Vol. 42, 2021, pp. 56–68.
[13] G. Liu, M. Liao, Z. Zhang, H. Wang, D. Chen, Y. Feng, "Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes", Sep. Purif. Technol., Vol. 244, 2020, pp. 116618.
[14] M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, "Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation", J. Mater. Sci. Technol., Vol. 56, 2020, pp. 133–142.
[15] D.S. Pattanayak, D. Pal, J. Mishra, C. Thakur, K.L. Wasewar, "Doped graphitic carbon nitride (g-C3N4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments", Environ. Sci. Pollut. Res., Vol. 64, 2022, pp. 1–8.
[16] A. Allahresani, B. Taheri, M.A. Nasseri, "Fe (III)@ g-C3N4 nanocomposite-catalyzed green synthesis of di-indolyloxindole derivatives", Res. Chem. Intermed., Vol. 44, 2018, pp. 6741–6751.
[17] J. Ma, Q. Yang, Y. Wen, W. Liu, "Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range", Appl. Catal. B. Environ., Vol 201, 2017, pp. 232–240.
[18] J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, "Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose", Nanoscale, Vol. 5, 2013, pp. 11604–11609.
[19] L. Bi, D. Xu, L. Zhang, Y. Lin, D. Wang, T. Xie, "Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending", Phys. Chem. Chem. Phys., Vol. 17, 2015, pp. 29899–29905.
[20] J. Zhang, S. Hu, Y. Wang, "A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure", RSC. Adv., Vol. 4, 2014, pp. 62912–62919.
[21] B. Liu, X. Nie, Y. Tang, S. Yang, L. Bian, F. Dong, H. He, Y. Zhou, K. Liu, "Objective findings on the K-doped g-C3N4 Photocatalysts: The presence and influence of organic byproducts on K-doped g-C3N4 photocatalysis", Langmuir , Vol. 37, 2021, pp. 4859–4868.
[22] J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang, S. Hu, "Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method", Appl. Surf. Sci., Vol. 332, 2015, pp. 625–630.
[23] H. Wang, W. He, H. Wang, F. Dong, "In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4", Sci. Bull., Vol. 63, 2018, pp. 117–125.
[24] H. Yan, H. Yang, "TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation", J. Alloys. Compd., Vol. 509, 2011, pp. 26–29.
[25] R. Pournajaf, S.A. Hassanzadeh-Tabrizi, "Polyacrylamide synthesis of nanostructured copper aluminate for photocatalytic application", J. Adv. Mater. Process., Vol. 5, 2018, pp. 12–19.
[26] K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, "Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Appl. Catal. B. Environ., Vol. 176, 2015, pp. 44–52.
[27] Z. Huang, Q. Sun, K. Lv, Z. Zhang, M. Li, B. Li, "Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2", Appl. Catal. B. Environ., Vol. 164, 2015, pp. 420–427.
[28] S. Park, C.H. Champness, I. Shih, "Characteristics of XPS Se 3d peaks in crystalline Bridgman CuInSe2+x with added sodium in the melt", J. Electron. Spectros. Relat. Phenomena., Vol. 205, 2015, pp. 23–28.
[29] L.L. Lai, J.M. Wu, "A facile solution approach to W, N co-doped TiO2 nanobelt thin films with high photocatalytic activity", J. Mater. Chem. A., Vol. 3, 2015, pp. 15863–15868.
[30] Z.A. Lan, G. Zhang, X. Wang, "A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting", Appl. Catal. B. Environ., Vol. 192, 2016, pp. 116–125.
[31] F. Guo, L. Wang, H. Sun, M. Li, W. Shi, X. Lin, "A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen", Int. J. Hydrogen. Energy., Vol. 45, 2020, pp. 30521–30532.
[32] N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F.A. Alharthi, V. Mohana, "Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities", Inorg. Chem. Commun., Vol. 127, 2021, pp. 108507.
[33] H.C. Yatmaz, A. Akyol, M. Bayramoglu, "Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions", Ind. Eng. Chem. Res., Vol. 43, 2004, pp. 6035–6039.
[34] Y. Li, X. Li, J. Li, J. Yin, "Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study", Water. Res., Vol. 40, 2006, pp. 1119–1126.