Investigation of arid vegetation compatibility toward precipitation variation with NDVI index (a case study, Ardakan-Aghda plain)
Subject Areas : forestمنیرالسادات Tabatabaii Zadeh 1 , فاطمه Hadian 2 , S.Z Hosseini 3 , جلال Barkhordari 4 , حسن Khosravi 5
1 - دانشجوی دکتری بیابان زدایی، مرکز تحقیقات کشاورزی و منابع طبیعی استان یزد، یزد، ایران
2 - کارشناس ارشد مرتعداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران
3 - استادیار دانشکده منابع طبیعی، دانشگاه یزد، یزد، ایران
4 - عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان یزد، یزد، ایران
5 - استادیار دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران
Keywords: Correlation, Precipitation, Remote Sensing, Arid,
Abstract :
Drought monitoring is a important management program, but have some limitation as economical, huge and arduous natural areas. Then nowadays have been used satellite images for drought monitoring and management of areas as fastest and low cost method. In this research have been used NOAA satellite images and annual/seasonal precipitation data during 2005-1982 then studied effect of Precipitation on vegetation cover in a part of Yazd province (Ardakan- Aghda area). The 92 precipitation maps have been prepared For determination of precipitation value in every vegetation type by using climate data and classified by distance weighting interpolation method. The results show an alone vegetation index could not define vegetation cover of study area that necessary to used multi-regression methods with other climatic factors. Furthermore, this index is not useful for arid area because have very low correlation between INDVI index and precipitation then is necessary to use other indexes and satellite images with more quality.
1-Akbarzadeh, M., S. T. Mirhaji, 2007. Vegetation Changes under Precipitation in Steppic Rangelands of Rudshur, Iranian Journal of Range and Desert Research 13(3):222-235, (In Persion).
2-Aliakbari, M., 2009. "Determining the potential habitat of two rangeland specise Agropyrom trichophorum & Astragalus verus with the integration of GIS and remote sensing in southern karchambouy area, Fereidan-Isfahan", MSc Thesis, Isfahan University of Tecnalogy, 117P: 117P, (In Persion).
3-Azarnivand, H. & M. A. Zare Chahouki, 2011. Rangeland Ecology, University of Tehran Press, 345P: 345P, (In Persion).
4-Buyantuyev, A., J. Wu, & C. Gries, 2007. Estimating Vegetation Cover in an Urban Environment Based on Landsat ETM+ Imagery: A Case Study in Phoenix, USA, International Journal of Remote Sensing 28(2):269–291.
5-Ding, M., Y. Zang, L. Liu, W. Zhang, Z. Wang, & W. Bal, 2007. The Relationship between NDVI and Precipitation on the Tibetan Plateau, Journal of Geographical Sciences 17(3):259-268.
6-Dubey, S., G. Pranuthi, & S. Tripathi, 2012. Assessing the Relation Between NDVI and Rainfall over India, International Journal of Water Resources and Arid Environment 2(4):108-114.
7-Fang, J., S. Piao, Z. Tang, C. Peng, W. Ji, 2001. Interannual Variability in Net Primary Production and Precipitation, science 293( 5536 ):1723a-1724a.
8-Farajzadeh, M., 2005. Drought from Consept to Solutions, National Geographical Organization Publication, 112P: 112P, (In Persion).
9-Funk, C. C. & M. E. Brown, 2006. Intra-seasonal NDVI change projections in semi-arid Africa, Remote Sensing of Environment 101:249–256.
10-Ghohroudi Tali, M., 2005. Geographic Information System, in the 3-D Dimentional Enviromental (Arc GIS 3-D), Tarbiat Moaalem University: 273P, (In Persion).
11-Goldsmith, F. B., 1991. Monitoring for Conservation and Ecology, Chapman & Hall:275P.
12-Gurgel, H. C. & N. J. Ferreira, 2003. Annual and Interannual Variability of NDVI in Brazil and its Connections with Climate, International Journal of Remote Sensing 24(18):3595–3609.
13-Hadian, F., 2011. "Analysing Vegetation Cover Changes and Its Relationship With Rainfall Using Satellite Data (Case Stady: Semirom Region, Isfahan)", MSc Thesis, Isfahan University of Tecnalogy, 105P: 105P, (In Persion).
14-Hadian, F., H. Bashari, R. Jafari, 2012. Effects of sampling sizes on the correlation between vegetation cover and NDVI data in different rangeland conditions using TM and AWiFS images, Journal of Applied RS & GIS Techniques in Natural Resource Science 3(2):85-97.
15-Hosseini, S. Z., 2013. The application of remote sensing, GIS, geostatistics, and ecological modeling in rangelands assessment and improvement , Ph.D Thesis, , University of Göttingen, Göttingen, 132 Pages.
16-Hosseini, S. Z., M. Kappas, P. Propastin, 2011. Estimating Relationship Between Vegetation Dynamic and Precipitation in Central Iran, Toledo, Spain.
17-Hosseini, S. Z., S. T. Mirhaji, A. R. Safari, 2002. Relationship between precipitation and yield of Medicago sativa (Case study: Hamand-e-Absard Range Research Station). Second National Conference of National Conference of Range and Range Management, Tehran University, Tehran, Iran.
18-Jafari, M., 2010. Reclamation of Aridland, University of Tehran Press: 396 P, (In persion).
19-Jafari, R., 2007. "Arid Land Condition Assessment and Monitiring Using Multispectral and Hyperspectral Imagery", PhD Thesis, University of Adelaid Australia: 150P.
20-Jalali, N., A. Khalilpour, 2008. Identification of spatial extent of extreme droughts and their impact on forests and rangelands in Iran during 1995-2001 using rainfall data and satellite images, Iranian Journal of Natural Resources 61(1):211-233, (In Persion).
21-Liang, E. Y., X. M. Shao, J. C. He, 2005. Relationships between tree growth and NDVI of grassland in the semiarid grassland of north China, International Journal of Remote Sensing 26(13):2901–2908.
22-Mayhew, W. W., 1965. Adaptations of the Amphibian, Scaphiopus couchi, to Desert Conditions, American Midland Naturalist 74(1):95-109.
23-Mesdaghi, M., 1998. Rage management in Iran, Astane ghods publications, 333P: 333P, (In Persion).
24-Moghaddasi, M., S. Morid, H. Ghami, J. M. V. Samaini, 2005. Daily Drought Monitoring, Tehran Province, Iranian Journal Agricultural Science 36(1):51-62, (In Persion).
25-Nickolson, S. E., M. L. Davenport, A. L. Malo, 1990. A Comparision of the Vegetation Response to Rainfall in the Sahel and East Africa Using Normalized Defference Vegetation Index from NOAA AVHRR, Climatic Change 17:209-241.
26-Piao, S., J. Fang, L. Zhou, Q. Guo, M. Henderson, W. Ji, Y. Li, S. Tao, 2003. Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999, Journal of Geophysical Reserch 108(14D):1-13.
27-Riano, D., E. Chavieco, J. Salas, I. Aguado, 2003. Assessment of Different Topographic orrections in Landsat-TM Data for Mapping Vegetation Types, Lee Transaction on Geoscience and Remote Sensing 41(5):1056 - 1061.
28-Richard, Y., N. g. Martiny, N. Fauchereau, C. Reason, M. Rouault, N. Vigaud, Y. Tracol, 2008. Interannual memory effects for spring NDVI in semi-arid South Africa, Geophysical Research Letters 35:1-6.
29-Richard, Y., I. Poccard, 1998. A Statistical Study of NDVI Sensitivity to Seasonal and Interannual Rainfall Variations in Southern Africa, International Journal of Remote Sensing 19(15):2907- 2920.
30-Sanaienejad, S. H., A. R. Shah Tahmasbi, R. Sadr Abadi Haghighi, K. Kelarestani, 2008. A Study of Spectral Reflection on Wheat Fields in Mashhad Using MODIS Data Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science 12(45):11-19, (In Persion).
31-Sarapirome, S., C. Kulrat, 2010. Comparison Urban Classification Using Landsat -TM and Liner Spectral Mixture Analysis Extracted Images: Nakhon Ratchasima Municipal Area, Thailand, Suranaree Journal of Science and Technology 17(4):401-411.
32-Scanlon, T. M., J. D. Albertson, K. K. Caylor, C. A. Williams, 2002. Determining Land Surface Fractional Cover from NDVI and Rainfall Time Series for a Savanna Ecosystem, Remote Sensing of Environment 82:376–388.
33-Xiaomeng, R., 2007. "Agricaltural vulnerability to drouth in southern alberta aquantitative assessment", Master of science, University of Lethbridge.
34-Yoshioka, H., T. Miura, J. A. Demattê, K. Batchily, A. R. Huete, 2010. Soil line influences on two-band vegetation indices and vegetation isolines: A numerical study, Remote Sensing 2(2):545-561.
_||_