Evaluation of allopathic effect of wild melon weed of Cucumis melo L. on the growth and antioxidant system of rapeseed (Brassica napus L) and wild mustard (Sinapis arvensis)
Subject Areas : GeneticNeshat Norouzi 1 , maryam niakan 2 , Mehdi Ebadi 3 , Masoumeh Younesabadi 4
1 - Department of Biology, Faculty of Science, Gorgan Branch, Islamic Azad University, Gorgan, Iran
2 - Department of Biology, Faculty of Science, Gorgan Branch, Islamic Azad University, Gorgan, Iran
3 - Department of Chemistry, Faculty of Science, Gorgan Branch, Islamic Azad University, Gorgan, Iran
4 - Plant Protection Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
Keywords: Rapeseed, Wild mustard, phenol, Wild Melon, Catalase growth, flavonoid peroxidase,
Abstract :
Allelopathic effect of weeds is one of the important factors limiting the growth and yields in crops. The aim of this study was to investigate the effect of aqueous extract of shoots (leaves and stems) of wild melon (Cucumis melo L.) on growth indices and antioxidant system of rapeseed and its accompanying wild mustard (Sinapis arvensis). This study was conducted as a split-split plot in the form of a randomized complete block design with three replications at the field level. The main plot included the target plant type at two levels (rapeseed RGS cultivar and Sinapis arvensis weed), the sub-plot included the type of organ at two levels (leaf and stem extract of wild melon) and the sub-plot of extract concentration at four levels (0 (control)) 2.5, 5, and 10%). The results showed that with increasing the concentration of wild melon leaf extract, most of the growth parameters in both target plants decreased and the intensity of this decrease was higher on the growth of Sinapis arvensis compared to rapeseed, while wild melon stem extract caused a more severe decrease in rapeseed growth parameters compared with Sinapis arvensis. Also, wild melon stem extract significantly increased catalase activity in canola compared to control and decreased peroxidase while the activity of peroxidase enzyme increased in Sinapis arvensis. Also, the increasing trend of phenolic compounds and decreasing flavonoid compounds of rapeseed leaves with increasing the concentration of extract was more dramatic and intense than Sinapis arvensis. According to the results of this study, the sensitivity of rapeseed and its associated weeds to the extracts of two wild melon organs was not the same, which should be considered in managing the use of plant allelopathy as an herbicide at field level.
Ali, J.S., ul Haq, I., Ali, A., Ahmed, M. and Zia, M. (2017). Onosma bracteatum Wall and Commiphora stocksiana Engl extracts generate oxidative stress in Brassica napus: An allelopathic perspective. Cogent Biology. 3(1): 1283875.
Ali, I.B.E.H., Bahri, R., Chaouachi, M., Boussaïd, M. and Harzallah-Skhiri, F. (2014). Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Industrial Crops and Products. 62: 188-195.
Al-Qudah, M.A., Al-Jaber, H.I., Muhaidat, R., Hussein, E.I., Abdel, A.A. and Hamid, A.S. (2011). Chemical composition and antimicrobial activity of the essential oil from Sinapis alba L. and Sinapis arvensis L.(Brassicaceae) growing wild in Jordan. Research Journal of Pharmaceutical, Biological and Chemical Sciences . 2(4): 1136-1144.
Asaduzzaman, M., Pratley, J.E., Luckett, D., Lemerle, D. and Wu, H. (2020). Weed management in canola (Brassica napus L): a review of current constraints and future strategies for Australia. Archives of Agronomy and Soil Science. 66(4): 427-444.
Ashraf, R., Sultana, B., Yaqoob, S. and Iqbal, M. (2017). Allelochemicals and crop management: A review. Current Science. 3(1): 1-13.
Bharwana, S.A., Ali, S., Farooq, M.A., Iqbal, N., Hameed, A., Abbas, F. and Ahmad, M.S. A. (2014). Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turkish Journal of Botany. 38(2): 281-292.
Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K. and Gawronski, S. W. (2006). Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum. 50(1): 156-158.
Bor, M., Özdemir, F. and Türkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 164(1): 77-84.
Cartea, M.E., Francisco, M., Soengas, P. and Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules Journal. 16(1): 251-280.
Chance, B. and Maehly, A.C. (1995). Assay of Catalase and Peroxidase. Methods in Enzymology, Academic Press. New York. (2): 764-775.
Cheng, F. and Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in plant science. 6: 1020.
de Mattos Ribeiro, V., Spiassi, A., Marcon, T. R., de Lima, G.P., Corsato, J.M. and Fortes, A.M.T. (2017). Antioxidative enzymes of Cucumis sativus seeds are modulated by Leucaena leucocephala extracts. Acta Scientiarum. Biological Sciences. 39(3): 373-380.
El-Shora, H.M. and Abd El-Gawad, A.M. (2015). Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environmental Bulletin Journal. 24: 386-393.
Fahamiya, N., Aslam, M., Siddiqui, A. and Shiffa, M. (2016). Review on cucumis melo: Ethnobotany and unani medcine. World Journal of Pharmaceutical Sciences. 5: 621-636.
Farhoudi, R. and Lee, D.J. (2013). Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 83(3): 447-452.
Gherekhloo, J., Hatami, Z.M., Alcántara-de la Cruz, R., Sadeghipour, H.R. and De Prado, R. (2018). Continuous Use of Tribenuron-Methyl Selected for Cross-Resistance to Acetolactate Synthase–inhibiting Herbicides in Wild Mustard (Sinapis arvensis). Weed Science. 66(4): 424-432.
Gidik, B., Onemli, F. and Cabi, E. (2016). Determination of wild plant species of Brassicaceae family in Turkish Thrace. Biological Diversity and Conservation. 9: 100-105.
Gulzar, A. and Siddiqui, M.B. (2017). Allelopathic effect of Calotropis procera (Ait.) R. Br. on growth and antioxidant activity of Brassica oleracea var. botrytis. Journal of the Saudi Society of Agricultural Sciences. 16(4):375-382.
Hadadchi, G.R. and Masoudi, K.F. (2006). Allelopathic effects of aqueous extracts of Sinapis arvensis on growth and related physiological and biochemical responses of Brassica napus. Jornal of Science (university of Tehran).23(1): 23-28.
Hadi, F., Bibi, H., Razzaq, A., Iqbal, A. and Ali, G. (2016). Allelopathic effect of Cucumis melo sub-species agrestis variety Agrestis on wheat. Pakistan Journal of Weed Science Research. 22(3): 471-480.
Jabran, K. and Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. Springer-Verlag Berlin Heidelberg.349-385.
Koroi, S.A. (1989). Gel electrophoresis tissue and spectrophotometrscho unter uchungen zomeinfiuss der temperature auf struktur der amylase and peroxidase isoenzyme. Physiology Review. 20: 15-23.
Lebecque, S., Crowet, J.M., Lins, L., Delory, B.M., du Jardin, P., Fauconnier, M.L. and Deleu, M. (2018). Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Scientific reports. 8(1): 1-13.
Macías, F.A., López, A., Varela, R.M., Torres, A. and Molinillo, J.M. (2008). Helikauranoside A, a new bioactive diterpene. Journal of chemical ecology. 34(1): 65-69.
Maffei, M., Bertea, C.M., Garneri, F. and Scannerini, S. (1999). Effect of benzoic acid hydroxy-and methoxy-ring substituents during cucumber (Cucumis sativus L.) germination. I.: Isocitrate lyase and catalase activity. Plant Science. 141(2): 139-147.
M’barek, K., Zribi, I., Ullah, M.J. and Haouala, R. (2019). The mode of action of allelochemicals aqueous leaf extracts of some Cupressaceae species on lettuce. Scientia Horticulturae. 252: 29-37.
Niakan, M., Habibi, A. and GHorbanli, M. (2011). Effect of pix on germination, growth, carbohydrates and antioxidant enzymes in cotton seed. Iranian Journal of Plant Physiology. 301-307.
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J.C., Bailleul, F. and Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of ethnopharmacology. 72(1-2): 35-42.
Rekha, K. and Thiruvengadam, M. (2017). Secondary metabolite production in transgenic hairy root cultures of cucurbits. Springer International Publishing, Switzerland. 267.
Rezayian, M., Niknam, V. and Ebrahimzadeh, H. (2018). Differential responses of phenolic compounds of Brassica napus under drought stress. Plant Physiology. 8(3): 2417-2425.
Sasi Kumar, R., Priyadharshini, S., Nandha Kumar, K.P.L. and Nivedha, S. (2014). In vitro pharmacognostical studies and evaluation of bioactive constituents from the fruits of Cucumis melo L.(Muskmelon). International Journal of Pharmacognosy and Phytochemical Research. 6(4): 936-941.
Singleton, V.L. and Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16(3): 144-158.
Wang, C., Liu, J. and Zhou, J. (2017). N deposition affects allelopathic potential of Amaranthus retroflexus with different distribution regions. Anais da Academia Brasileira de Ciências. 89(2): 919-926.
Yu, J.Q. (2001). Autotoxic potential of cucurbit crops: phenomenon, chemicals, mechanisms and means to overcome. Journal of Crop Production. 4(2): 335-348.
Zhang, Z., Zhang, Z., Han, X., Wu, J., Zhang, L., Wang, J. and Wang-Pruski, G. (2020). Specific response mechanism to autotoxicity in melon (Cucumis melo L.) root revealed by physiological analyses combined with transcriptome profiling. Ecotoxicology and Environmental Safety. 200: 110779.
_||_
Ali, J.S., ul Haq, I., Ali, A., Ahmed, M. and Zia, M. (2017). Onosma bracteatum Wall and Commiphora stocksiana Engl extracts generate oxidative stress in Brassica napus: An allelopathic perspective. Cogent Biology. 3(1): 1283875.
Ali, I.B.E.H., Bahri, R., Chaouachi, M., Boussaïd, M. and Harzallah-Skhiri, F. (2014). Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Industrial Crops and Products. 62: 188-195.
Al-Qudah, M.A., Al-Jaber, H.I., Muhaidat, R., Hussein, E.I., Abdel, A.A. and Hamid, A.S. (2011). Chemical composition and antimicrobial activity of the essential oil from Sinapis alba L. and Sinapis arvensis L.(Brassicaceae) growing wild in Jordan. Research Journal of Pharmaceutical, Biological and Chemical Sciences . 2(4): 1136-1144.
Asaduzzaman, M., Pratley, J.E., Luckett, D., Lemerle, D. and Wu, H. (2020). Weed management in canola (Brassica napus L): a review of current constraints and future strategies for Australia. Archives of Agronomy and Soil Science. 66(4): 427-444.
Ashraf, R., Sultana, B., Yaqoob, S. and Iqbal, M. (2017). Allelochemicals and crop management: A review. Current Science. 3(1): 1-13.
Bharwana, S.A., Ali, S., Farooq, M.A., Iqbal, N., Hameed, A., Abbas, F. and Ahmad, M.S. A. (2014). Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turkish Journal of Botany. 38(2): 281-292.
Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K. and Gawronski, S. W. (2006). Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum. 50(1): 156-158.
Bor, M., Özdemir, F. and Türkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 164(1): 77-84.
Cartea, M.E., Francisco, M., Soengas, P. and Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules Journal. 16(1): 251-280.
Chance, B. and Maehly, A.C. (1995). Assay of Catalase and Peroxidase. Methods in Enzymology, Academic Press. New York. (2): 764-775.
Cheng, F. and Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in plant science. 6: 1020.
de Mattos Ribeiro, V., Spiassi, A., Marcon, T. R., de Lima, G.P., Corsato, J.M. and Fortes, A.M.T. (2017). Antioxidative enzymes of Cucumis sativus seeds are modulated by Leucaena leucocephala extracts. Acta Scientiarum. Biological Sciences. 39(3): 373-380.
El-Shora, H.M. and Abd El-Gawad, A.M. (2015). Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environmental Bulletin Journal. 24: 386-393.
Fahamiya, N., Aslam, M., Siddiqui, A. and Shiffa, M. (2016). Review on cucumis melo: Ethnobotany and unani medcine. World Journal of Pharmaceutical Sciences. 5: 621-636.
Farhoudi, R. and Lee, D.J. (2013). Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 83(3): 447-452.
Gherekhloo, J., Hatami, Z.M., Alcántara-de la Cruz, R., Sadeghipour, H.R. and De Prado, R. (2018). Continuous Use of Tribenuron-Methyl Selected for Cross-Resistance to Acetolactate Synthase–inhibiting Herbicides in Wild Mustard (Sinapis arvensis). Weed Science. 66(4): 424-432.
Gidik, B., Onemli, F. and Cabi, E. (2016). Determination of wild plant species of Brassicaceae family in Turkish Thrace. Biological Diversity and Conservation. 9: 100-105.
Gulzar, A. and Siddiqui, M.B. (2017). Allelopathic effect of Calotropis procera (Ait.) R. Br. on growth and antioxidant activity of Brassica oleracea var. botrytis. Journal of the Saudi Society of Agricultural Sciences. 16(4):375-382.
Hadadchi, G.R. and Masoudi, K.F. (2006). Allelopathic effects of aqueous extracts of Sinapis arvensis on growth and related physiological and biochemical responses of Brassica napus. Jornal of Science (university of Tehran).23(1): 23-28.
Hadi, F., Bibi, H., Razzaq, A., Iqbal, A. and Ali, G. (2016). Allelopathic effect of Cucumis melo sub-species agrestis variety Agrestis on wheat. Pakistan Journal of Weed Science Research. 22(3): 471-480.
Jabran, K. and Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. Springer-Verlag Berlin Heidelberg.349-385.
Koroi, S.A. (1989). Gel electrophoresis tissue and spectrophotometrscho unter uchungen zomeinfiuss der temperature auf struktur der amylase and peroxidase isoenzyme. Physiology Review. 20: 15-23.
Lebecque, S., Crowet, J.M., Lins, L., Delory, B.M., du Jardin, P., Fauconnier, M.L. and Deleu, M. (2018). Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Scientific reports. 8(1): 1-13.
Macías, F.A., López, A., Varela, R.M., Torres, A. and Molinillo, J.M. (2008). Helikauranoside A, a new bioactive diterpene. Journal of chemical ecology. 34(1): 65-69.
Maffei, M., Bertea, C.M., Garneri, F. and Scannerini, S. (1999). Effect of benzoic acid hydroxy-and methoxy-ring substituents during cucumber (Cucumis sativus L.) germination. I.: Isocitrate lyase and catalase activity. Plant Science. 141(2): 139-147.
M’barek, K., Zribi, I., Ullah, M.J. and Haouala, R. (2019). The mode of action of allelochemicals aqueous leaf extracts of some Cupressaceae species on lettuce. Scientia Horticulturae. 252: 29-37.
Niakan, M., Habibi, A. and GHorbanli, M. (2011). Effect of pix on germination, growth, carbohydrates and antioxidant enzymes in cotton seed. Iranian Journal of Plant Physiology. 301-307.
Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J.C., Bailleul, F. and Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of ethnopharmacology. 72(1-2): 35-42.
Rekha, K. and Thiruvengadam, M. (2017). Secondary metabolite production in transgenic hairy root cultures of cucurbits. Springer International Publishing, Switzerland. 267.
Rezayian, M., Niknam, V. and Ebrahimzadeh, H. (2018). Differential responses of phenolic compounds of Brassica napus under drought stress. Plant Physiology. 8(3): 2417-2425.
Sasi Kumar, R., Priyadharshini, S., Nandha Kumar, K.P.L. and Nivedha, S. (2014). In vitro pharmacognostical studies and evaluation of bioactive constituents from the fruits of Cucumis melo L.(Muskmelon). International Journal of Pharmacognosy and Phytochemical Research. 6(4): 936-941.
Singleton, V.L. and Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16(3): 144-158.
Wang, C., Liu, J. and Zhou, J. (2017). N deposition affects allelopathic potential of Amaranthus retroflexus with different distribution regions. Anais da Academia Brasileira de Ciências. 89(2): 919-926.
Yu, J.Q. (2001). Autotoxic potential of cucurbit crops: phenomenon, chemicals, mechanisms and means to overcome. Journal of Crop Production. 4(2): 335-348.
Zhang, Z., Zhang, Z., Han, X., Wu, J., Zhang, L., Wang, J. and Wang-Pruski, G. (2020). Specific response mechanism to autotoxicity in melon (Cucumis melo L.) root revealed by physiological analyses combined with transcriptome profiling. Ecotoxicology and Environmental Safety. 200: 110779.