The effects of gibberellic acid on certain physiological parameters in alfalfa
(Medicago sativa L.) under cadmium stress.
Subject Areas :
Genetic
Farzaneh Najafi
1
,
Zeinab Taghizadeh
2
1 - Department of plant physiology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
2 - Department of plant physiology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
Received: 2021-05-09
Accepted : 2021-09-22
Published : 2022-06-22
Keywords:
Stress,
Medicago sativa,
Key words: Oxidative stress,
. heavy metals,
gibberllins,
Abstract :
Alfalfa is one of the most important forage corps in the world. The Medicago plant is a major genus from the fabaceae.High concentration of heavy metals in soil is one of the most important problems in the environment . Cadmium is a heavy metal that can cause oxidative stress in plant cells. In this research effects of different concentrations of cadmium (0 , 25 and 50 µM) and gibberellic acid (0 , 5 and 10 µM) were investigated on certain physiological parameters in Medicago sativa L. Alfalfa seeds were sterilized and cultured in pots containing sand which were irrigated with Hoagland nutrient solution. plants were treated with cadmium chloride and gibberellin 22 - old day.after twenty two days Plants were harvested to assay some physiological parameters. All treatments were conducted with four replications. Experiment results showed that increasing cadmium chloride concentration in Hoagland nutrient solution, decreased growth parameters and pigment contents and GPX activity.But , but proline contents, SOD and CAT activties in roots and leaves of plants increased. by additionof gibberellin concentrations. . It is concluded that gibberellic acid could alleviate the adverse effects of stress cadmium chloride in Medicago sativa L.
References:
Abbasi, A., Maleki, A., babaei, F., safari, and rangin, A. (2022). The effect of zinc sulfate and gibberellic acid on gas exchange and white bean (Phaseolus vulgaris)performance under drought stress. Journal of Plant Environmental Physiology.65(1): 1-19.
Abd El-Monem, M. and Sharaf, I.I. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad and lupin plants. Res Journals of Agricultural and Biological Sciences Iran. 5: 668-673.
Adams, B. (2003). Linking the xanthophyll cycle with thermal energy dissipation. Photosynthesis Research 76: 73–80, 2003.
Azevedo, A.M. (2003). Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol. Annual Reviews. 9:199-247.
Bates, L.S., Waldren, R.P. and Teare, I.D.) 1973(. Rapid determination of free proline for water-stress studies. Plant and Soil .39:205–207.
Benavids, M.P., Gallego, S.M. and Tomaro, M.L. (2005). Cadmuim toxicity in plants. Braz. Journal Plant Physiology. 17: 21-34.
Bradford, M.M. (1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254.
Cance, B. and Maehly, C. (1995). Assay of catalase and peroxidase, Methods in Enzymes. 11:764-775.
Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytology, 146: 185-205
Chaffei ,C.,Gouia, H. and Ghorbel, M.H.(2003). Nitrogen metabolism in tomato plants under cadmium stress. Plant Nutrition.26:1617-1634.
Chen, X., Wang, J., Shi, Y., Zhao, M.Q. and Chi, G.Y. (2011). Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52: 41-46.
Colodny, L.R., J, A.M. and Montgomery, A. (2001). Houston M. The role of esterin processed alfalfa saponins in reducing cholesterol. Nutraceutical Association. 3: 6–15.
Dazy, M., Jung, V. and Masfaraud, I. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant anti oxidant enzymes and possible implication in site restoration. Chemosphere. 74: 57-63.
Evans, G.C. and Hughes, A.P. (1962). Plant growth and the aerial environment on the computation of unite leaf rate. New Phytologyst. 61,322-327.
Ghaderian, S.M. and Jamali Hajiani, N. (2010). Tolerance ,uptake and accumulation of cadmium in Matthiola chenopodiifolia Fisch and C.A. Mey (Brassicaceae). Plant Biology, 1389:87-98 .
Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase Occurrence in higher plant. Plant Physiology, 59: 309-314.
Hayssam, M., Manzer, A., Siddiqui, H., Mohammed, O. Mohamed, H., Al-Whaibi., Ahmed, M. and Abdullah, Al-Amri. (2012). Effects of gibberellic acid on growth and photosynthetic pigments of Hibiscus sabdariffa under salt stress. African Journal of Biotechnology. 11: 800-804.
Hegedus, A., Eradei, S. and Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzyme in green and greening barely seedling cadmium stress. Plant science. 160: 1085-1093.
Hoagland, D.R and Arnon, D.I.) 1950(. The water culture method for growing plants without soil. California Agricultural Experiment Station, Circular - 347.
Khan, M.M., Gautam C., Mohamad, F., Siddiqui, M.H., Naeem, M. and Khan, M.N. (2006). Effect of gibberellic Acid Spray on Performance of Tomato. Turkish Journal of Biology, 30: 11-16.
Lee, D , Kim, Y.S. and Lee, C.B. (2001). The induction responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal Plant Physiology. 158: 737-745.
Lichenthaler, H.K. (1987). Chlorophyll and carotenoid: Pigment of Photosynthetic Biomembranes, Methods in Enzymology.148: 350-382.
Maleki, A., Fathim, A. and Bahamin, S. (2020). The effect of gibberehhin hormone on yield, growth indces, and biochemical traits of corn (Zea Mays ) under drought stress. Journal of Iranian Plant Eco Physiological Research, 15(59): 1-16.
Manzer, H., Siddiqui, M.H., Whaibi, A. and Mohammed, O.B. (2010). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum. Journal Protoplasma. 248: 503-511.
Mishra, S. and Srivastava, S. (2006). Phytochelatin synthesis and response of antioxidant during cadmium stress in Bacopa monnieri Plant physiology Biochemistry.44: 25-37.
Palma, J.M., Sandalio, L.M. and Corpas, F. (2002). Plant proteases protein degradation and oxidative stress:role of peroxisomes. Plant Physiology Biochemistry.40:521-530.
Panou-Philtheou, H., Koukourikoupetridou, M., Bosabalidis, A. and Karataglis, S. (2002). Relation of endogenousand applied gibberellins to growth and accumulation of essential elements in aregano plants grown in copper rich soils. Advances in Horticultural Science.16:63-71.
Sandalio, L.M., Dalurzo, H.C. and Gomez, M. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Exprimental Botany. 52: 2115-2126.
Shi, G., Liu, C., Cai, Q., Liu, Q. and Hou, C. (2010). Cadmium Accumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes. Bulletin of Environmental Contamination and Toxicology.85:256–263.
Thien, Q., Nguyen., V., Sesin. A., Kisiala, N. and Emery, R.J. (2021). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1): 7–22.
Van Assche, F. and Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plants Cell Environment. 13: 195-206.
Yang, X., Baligor, V.C., Mantest, D.C. and Clark, R.B. (1996). Plant tolerance to Nickel toxicity: Influx, transport and accumulation of Nickel in four species. Journal of Nutrition. 19:73-85.
_||_
Abbasi, A., Maleki, A., babaei, F., safari, and rangin, A. (2022). The effect of zinc sulfate and gibberellic acid on gas exchange and white bean (Phaseolus vulgaris)performance under drought stress. Journal of Plant Environmental Physiology.65(1): 1-19.
Abd El-Monem, M. and Sharaf, I.I. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad and lupin plants. Res Journals of Agricultural and Biological Sciences Iran. 5: 668-673.
Adams, B. (2003). Linking the xanthophyll cycle with thermal energy dissipation. Photosynthesis Research 76: 73–80, 2003.
Azevedo, A.M. (2003). Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol. Annual Reviews. 9:199-247.
Bates, L.S., Waldren, R.P. and Teare, I.D.) 1973(. Rapid determination of free proline for water-stress studies. Plant and Soil .39:205–207.
Benavids, M.P., Gallego, S.M. and Tomaro, M.L. (2005). Cadmuim toxicity in plants. Braz. Journal Plant Physiology. 17: 21-34.
Bradford, M.M. (1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254.
Cance, B. and Maehly, C. (1995). Assay of catalase and peroxidase, Methods in Enzymes. 11:764-775.
Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytology, 146: 185-205
Chaffei ,C.,Gouia, H. and Ghorbel, M.H.(2003). Nitrogen metabolism in tomato plants under cadmium stress. Plant Nutrition.26:1617-1634.
Chen, X., Wang, J., Shi, Y., Zhao, M.Q. and Chi, G.Y. (2011). Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52: 41-46.
Colodny, L.R., J, A.M. and Montgomery, A. (2001). Houston M. The role of esterin processed alfalfa saponins in reducing cholesterol. Nutraceutical Association. 3: 6–15.
Dazy, M., Jung, V. and Masfaraud, I. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant anti oxidant enzymes and possible implication in site restoration. Chemosphere. 74: 57-63.
Evans, G.C. and Hughes, A.P. (1962). Plant growth and the aerial environment on the computation of unite leaf rate. New Phytologyst. 61,322-327.
Ghaderian, S.M. and Jamali Hajiani, N. (2010). Tolerance ,uptake and accumulation of cadmium in Matthiola chenopodiifolia Fisch and C.A. Mey (Brassicaceae). Plant Biology, 1389:87-98 .
Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutase Occurrence in higher plant. Plant Physiology, 59: 309-314.
Hayssam, M., Manzer, A., Siddiqui, H., Mohammed, O. Mohamed, H., Al-Whaibi., Ahmed, M. and Abdullah, Al-Amri. (2012). Effects of gibberellic acid on growth and photosynthetic pigments of Hibiscus sabdariffa under salt stress. African Journal of Biotechnology. 11: 800-804.
Hegedus, A., Eradei, S. and Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzyme in green and greening barely seedling cadmium stress. Plant science. 160: 1085-1093.
Hoagland, D.R and Arnon, D.I.) 1950(. The water culture method for growing plants without soil. California Agricultural Experiment Station, Circular - 347.
Khan, M.M., Gautam C., Mohamad, F., Siddiqui, M.H., Naeem, M. and Khan, M.N. (2006). Effect of gibberellic Acid Spray on Performance of Tomato. Turkish Journal of Biology, 30: 11-16.
Lee, D , Kim, Y.S. and Lee, C.B. (2001). The induction responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal Plant Physiology. 158: 737-745.
Lichenthaler, H.K. (1987). Chlorophyll and carotenoid: Pigment of Photosynthetic Biomembranes, Methods in Enzymology.148: 350-382.
Maleki, A., Fathim, A. and Bahamin, S. (2020). The effect of gibberehhin hormone on yield, growth indces, and biochemical traits of corn (Zea Mays ) under drought stress. Journal of Iranian Plant Eco Physiological Research, 15(59): 1-16.
Manzer, H., Siddiqui, M.H., Whaibi, A. and Mohammed, O.B. (2010). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum. Journal Protoplasma. 248: 503-511.
Mishra, S. and Srivastava, S. (2006). Phytochelatin synthesis and response of antioxidant during cadmium stress in Bacopa monnieri Plant physiology Biochemistry.44: 25-37.
Palma, J.M., Sandalio, L.M. and Corpas, F. (2002). Plant proteases protein degradation and oxidative stress:role of peroxisomes. Plant Physiology Biochemistry.40:521-530.
Panou-Philtheou, H., Koukourikoupetridou, M., Bosabalidis, A. and Karataglis, S. (2002). Relation of endogenousand applied gibberellins to growth and accumulation of essential elements in aregano plants grown in copper rich soils. Advances in Horticultural Science.16:63-71.
Sandalio, L.M., Dalurzo, H.C. and Gomez, M. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Exprimental Botany. 52: 2115-2126.
Shi, G., Liu, C., Cai, Q., Liu, Q. and Hou, C. (2010). Cadmium Accumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidantive Enzymes. Bulletin of Environmental Contamination and Toxicology.85:256–263.
Thien, Q., Nguyen., V., Sesin. A., Kisiala, N. and Emery, R.J. (2021). Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environmental Toxicology and Chemistry, 40(1): 7–22.
Van Assche, F. and Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plants Cell Environment. 13: 195-206.
Yang, X., Baligor, V.C., Mantest, D.C. and Clark, R.B. (1996). Plant tolerance to Nickel toxicity: Influx, transport and accumulation of Nickel in four species. Journal of Nutrition. 19:73-85.