Subject Areas : Computer Engineering
Habib Esmaeelzadeh Rostam 1 , Homayun Motameni 2 , Rasul Enayatifar 3
1 - Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
2 - Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
3 - Department of Computer Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
Keywords:
Abstract :
[1] A. Alarood, N. Ababneh, M. Al-Khasawneh, M. Rawashdeh, and M. Al-Omari, “IoTSteg: ensuring privacy and authenticity in internet of things networks using weighted pixels classification based image steganography,” Cluster Comput., vol. 4, 2021, doi: 10.1007/s10586-021-03383-4.
[2] L. Hou et al., “Internet of Things Cloud: Architecture and Implementation,” IEEE Commun. Mag., vol. 54, no. 11, pp. 32–39, 2016, doi: 10.1109/MCOM.2016.1600398CM.
[3] A. K. Srivastava, A. Agarwal, and A. Mathur, “Internet of Things and its enhanced data security,” Int. J. Eng. …, no. 2, pp. 79–81, 2015.
[4] M. Eltayeb, “Internet of Things: Privacy and Security Implications,” Int. J. Hyperconnectivity Internet Things, vol. 1, no. 1, pp. 1–18, 2017, doi: 10.4018/IJHIoT.2017010101.
[5] H. E. Rostam, A. M. Rahmani, and K. Zamanifar, “Resource Management in Semantic Grid System Based on QoS,” in 2009 Second International Conference on Computer and Electrical Engineering, 2009, vol. 2, pp. 418–421, doi: 10.1109/ICCEE.2009.171.
[6] S. A. Parah, J. A. Sheikh, J. A. Akhoon, and N. A. Loan, “Electronic Health Record hiding in Images for smart city applications: A computationally efficient and reversible information hiding technique for secure communication,” Futur. Gener. Comput. Syst., 2018, doi: 10.1016/j.future.2018.02.023.
[7] W. Strielkowski, Smart grids of tomorrow and the challenges for the future. 2020.
[8] A. A. Abi Sen, F. A. Eassa, K. Jambi, and M. Yamin, “Preserving privacy in internet of things: a survey,” Int. J. Inf. Technol., vol. 10, no. 2, pp. 189–200, 2018, doi: 10.1007/s41870-018-0113-4.
[9] H. Hui, Y. Ding, Q. Shi, F. Li, Y. Song, and J. Yan, “5G network-based Internet of Things for demand response in smart grid: A survey on application potential,” Appl. Energy, vol. 257, no. August 2019, p. 113972, 2020, doi: 10.1016/j.apenergy.2019.113972.
[10] W. Kong, J. Shen, P. Vijayakumar, Y. Cho, and V. Chang, “A practical group blind signature scheme for privacy protection in smart grid,” J. Parallel Distrib. Comput., vol. 136, pp. 29–39, 2020, doi: 10.1016/j.jpdc.2019.09.016.
[11] H. E. Rostam, H. Motameni, and R. Enayatifar, “Privacy-preserving in the Internet of Things based on steganography and chaotic functions,” Optik (Stuttg)., vol. 258, no. March, p. 168864, 2022, doi: 10.1016/j.ijleo.2022.168864.
[12] S. Devi, M. N. Sahoo, K. Muhammad, W. Ding, and S. Bakshi, “Hiding medical information in brain MR images without affecting accuracy of classifying pathological brain,” Futur. Gener. Comput. Syst., vol. 99, pp. 235–246, 2019, doi: 10.1016/j.future.2019.01.047.
[13] M. S. Taha, M. Shafry, and M. Rahem, High payload image steganography scheme with minimum distortion based on distinction grade value method. Multimedia Tools and Applications, 2022.
[14] S. Hossain, S. Mukhopadhyay, and B. Ray, “A secured image steganography method based on ballot transform and genetic algorithm,” 2022.
[15] D. Mehta and D. Bhatti, “Blind image steganography algorithm development which resistant against JPEG compression attack,” Multimed. Tools Appl., pp. 459–479, 2022, doi: 10.1007/s11042-021-11351-8.
[16] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research,” Neurocomputing, 2019, doi: 10.1016/j.neucom.2018.06.075.
[17] A. Abdullah, S. Ali, R. Mstafa, and V. Haji, “Image steganography based on DNA sequence translation properties,” UKH J. Sci. Eng., vol. 4, no. 6, pp. 15–26, 2020, doi: 10.25079/ukhjse.v4n1y2020.pp15-26.
[18] O. A. Al-Harbi, W. E. Alahmadi, and A. O. Aljahdali, “Security analysis of DNA based steganography techniques,” SN Appl. Sci., vol. 2, no. 2, pp. 1–10, 2020, doi: 10.1007/s42452-019-1930-1.
[19] D. Na, “DNA steganography: Hiding undetectable secret messages within the single nucleotide polymorphisms of a genome and detecting mutation-induced errors,” Microb. Cell Fact., vol. 19, no. 1, pp. 1–9, 2020, doi: 10.1186/s12934-020-01387-0.
[20] M. S. L. A, “A Review on DNA based Encryption and Steganography,” Int. J. Sci. Res., vol. 6, no. 2, pp. 309–312, 2017, [Online]. Available: https://www.ijsr.net/archive/v6i2/ART2017612.pdf.
[21] G. Kumaresan, N. P. Gopalan, and T. Vetriselvi, “An Efficient Image Block Encryption for Key Generation using Non-Uniform Cellular Automata,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no. 2, pp. 28–35, 2019, doi: 10.5815/ijcnis.2019.02.04.
[22] S. Yi and Y. Zhou, “Binary-block embedding for reversible data hiding in encrypted images,” Signal Processing, vol. 133, no. October 2016, pp. 40–51, 2017, doi: 10.1016/j.sigpro.2016.10.017.
[23] M. Mahmud, Atta-ur-Rahman, M. Lee, and J.-Y. Choi, “Evolutionary-based image encryption using RNA codons truth table,” Opt. Laser Technol., vol. 121, no. June 2019, p. 105818, 2020, doi: 10.1016/j.optlastec.2019.105818.
[24] A. Jarjar, “Two Feistel rounds in image cryptography acting at the nucleotide level exploiting dna and rna property,” SN Appl. Sci., no. June, 2019, doi: 10.1007/s42452-019-1305-7.
[25] A. Kumar and N. S. Raghava, “Chaos-based steganography technique to secure information and integrity preservation of smart grid readings using wavelet,” Int. J. Comput. Appl., vol. 0, no. 0, pp. 1–7, 2019, doi: 10.1080/1206212X.2019.1692511.
[26] M. Wang, X. Wang, Y. Zhang, S. Zhou, T. Zhao, and N. Yao, “A novel chaotic system and its application in a color image cryptosystem,” Opt. Lasers Eng., vol. 121, no. December 2018, pp. 479–494, 2019, doi: 10.1016/j.optlaseng.2019.05.013.
[27] W. H. A. A. Y. Al-ashwal, “Hybrid image steganography method using Lempel Ziv Welch and genetic algorithms for hiding confidential data,” Multidimens. Syst. Signal Process., vol. 33, no. 2, pp. 561–578, 2022, doi: 10.1007/s11045-021-00793-w.
[28] O. Fouad and A. Wahab, “Hiding Data Using Efficient Combination of RSA Cryptography , and Compression Steganography Techniques,” vol. 9, pp. 31805–31815, 2021, doi: 10.1109/ACCESS.2021.3060317.
[29] A. K. Bairagi, R. Khondoker, and R. Islam, “An efficient steganographic approach for protecting communication in the Internet of Things (IoT) critical infrastructures,” Inf. Secur. J., vol. 25, no. 4–6, pp. 197–212, 2016, doi: 10.1080/19393555.2016.1206640.
[30] S. kumar, R. Kumar, S. Kumar, and S. Kumar, “Cryptographic construction using coupled map lattice as a diffusion model to enhanced security,” J. Inf. Secur. Appl., vol. 46, pp. 70–83, 2019, doi: 10.1016/j.jisa.2019.02.011.
[31] N. N. Hurrah, S. A. Parah, N. A. Loan, J. A. Sheikh, M. Elhoseny, and K. Muhammad, “Dual watermarking framework for privacy protection and content authentication of multimedia,” Futur. Gener. Comput. Syst., vol. 94, pp. 654–673, 2019, doi: 10.1016/j.future.2018.12.036.
[32] H. Bae, B. Lee, S. Kwon, and S. Yoon, “DNA Steganalysis Using Deep Recurrent Neural Networks,” pp. 88–99, 2017, [Online]. Available: http://arxiv.org/abs/1704.08443.
[33] H. Li, L. Hu, J. Chu, L. Chi, and H. Li, “The maximum matching degree sifting algorithm for steganography pretreatment applied to IoT,” Multimed. Tools Appl., vol. 77, no. 14, pp. 18203–18221, 2018, doi: 10.1007/s11042-017-5075-1.
[34] S. R. Kim, J. N. Kim, S. T. Kim, S. Shin, and J. H. Yi, “Anti-reversible dynamic tamper detection scheme using distributed image steganography for IoT applications,” J. Supercomput., vol. 74, no. 9, pp. 4261–4280, 2018, doi: 10.1007/s11227-016-1848-y.
[35] N. N. Hurrah, S. A. Parah, J. A. Sheikh, F. Al-Turjman, and K. Muhammad, “Secure data transmission framework for confidentiality in IoTs,” Ad Hoc Networks, vol. 95, p. 101989, 2019, doi: 10.1016/j.adhoc.2019.101989.
[36] N. Singh and A. Sinha, “Optical image encryption using fractional Fourier transform and chaos,” Opt. Lasers Eng., 2008, doi: 10.1016/j.optlaseng.2007.09.001.
[37] M. K. Priyanka Dongardive Neelesh Gupta, “Review on Different Methods of Image Steganography,” Int. J. Sci. Res., 2014.
[38] D. R. Igantius and M. Setiadi, “PSNR vs SSIM : imperceptibility quality assessment for image steganography,” 2020.
[39] J. A. Michel-Macarty, M. A. Murillo-Escobar, R. M. López-Gutiérrez, C. Cruz-Hernández, and L. Cardoza-Avendaño, “Multiuser communication scheme based on binary phase-shift keying and chaos for telemedicine,” Comput. Methods Programs Biomed., vol. 162, pp. 165–175, 2018, doi: 10.1016/j.cmpb.2018.05.021.
[40] P. Singh and B. Raman, “Reversible data hiding based on Shamir’s secret sharing for color images over cloud,” Inf. Sci. (Ny)., vol. 422, pp. 77–97, 2018, doi: 10.1016/j.ins.2017.08.077.
[41] C. F. Lee and Y. L. Huang, “An efficient image interpolation increasing payload in reversible data hiding,” Expert Syst. Appl., vol. 39, no. 8, pp. 6712–6719, 2012, doi: 10.1016/j.eswa.2011.12.019.
[42]…L.University,UCIDImageDataset,http://homepages.lboro.ac.uk/cogs/datasets/ucid/data/ucid.v2.tar.gz[03,01,13].