An Investigation on the Effect of Acidithiobacillus Ferrooxidans Bacteria on Biomachining of Titanium Alloy and Copper
Subject Areas :Mehrdad Ghani 1 , Hamid Soleimanimehr 2 , Elham Shirani Bidabadi 3
1 - Researcher in Biotechnology lab, University of Esfahan, Esfahan, Iran
2 - Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Biotechnology, University of Isfahan, Esfahan, Iran
Keywords:
Abstract :
[1] Jadhav, U. and Hocheng, H. 2014. Use of Aspergillus niger 34770 culture supernatant for tin metal removal. Corrosion science. 82: 248-254.
[2] Xenofontos, E., Feidiou, A., Constantinou, M., Constantinides, G., Vyrides, I. 2015. Copper biomachining mechanisms using the newly isolated Acidithiobacillus Ferrooxidans B1. Corrosion Science. 100: 642-650.
[3] Chang, J., Hocheng, H., Chang, H., Shih, A. 2008. Metal removal rate of Thiobacillus thiooxidans without pre-secreted metabolite. Journal of materials processing technology. 201 (1): 560-564.
[4] Rai-Choudhury, P. 1997. Handbook of microlithography, micromachining and microfabrication: microlithography: Institution of Engineering And Technology.
[5] Roy, S., Ferrara, L. A., Fleischman, A. J., Benzel, E.C. 2001. Micro-electromechanical systems and neurosurgery: a new era in a new millennium. Neurosurgery. 49 (4): 779-798.
[6] Jain, V.K. 2013. Micromanufacturing Processes. New York: Taylor and Francis.
[7] Hocheng, H., Chang, J.H. and Jadhav, U. U. 2012. Micromachining of various metals by using Acidithiobacillus ferrooxidans 13820 culture supernatant experiments. Journal of Cleaner Production. 20 (1): 180-185.
[8] Istiyanto, J., Kim, M. Y. and Ko, T. J. 2011. Profile characteristics of biomachined copper. Microelectronic Engineering. 88 (8): 2614-2617.
[9] Istiyanto, J., Ko, T. J. and Yoon, I. C. 2010. A study on copper micromachining using microorganisms. International Journal of Precision Engineering and Manufacturing. 11 (5): 659-664.
[10] Jadhav, U. U., Hocheng, H. and Weng, W.H. 2013. Innovative use of biologically produced ferric sulfate for machining of copper metal and study of specific metal removal rate and surface roughness during the process. Journal of Materials Processing Technology. 213 (9): 1509-1515.
[11] Eskandarian, M., Karimi, A. and Shabgard, M. 2013. Studies on enzymatic biomachining of copper by glucose oxidase. Journal of the Taiwan Institute of Chemical Engineers. 44 (2): 331-335.
[12] Lorenzetti, M., Dogsa, I., Stosicki, T. A., Kalin, M., Kobe, S. and Novak, S. 2015. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS applied materials & interfaces. 7 (3): 1644-1651.
[13] Visai, L., De Nardo, L., Punta, C., Melone, L., Cigada, A., Imbriani, M., Arciola, CR. 2011. Titanium oxide antibacterial surfaces in biomedical devices. International Journal of Artificial Organs. 34 (9): 929-946.
[14] Choi, J. Y., Kim, K. H., Choy, K. C., Oh, K.T., Kim, K.N. 2007. Photocatalytic antibacterial effect of TiO2 film formed on Ti and TiAg exposed to Lactobacillus acidophilus. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 80 (2): 353-359.
[15] Johnson, D., Warner, R. and Shih, A. J. 2007. Surface roughness and material removal rate in machining using microorganisms. Journal of Manufacturing Science and Engineering. 129 (1): 223-227.
[16] Istiyanto, J., Saragih, A.-S. and Ko, T. J. 2012. Metal based micro-feature fabrication using biomachining process. Microelectronic Engineering. 98: 561-565.
[17] Kumada, M., Kawakado, T., Kobuchi, S. and Uno, Y. 2001. Investigation of fine biomachining of metals by means of microbially influenced corrosion: differences between steel and copper in metal biomachining using Thiobacillus Ferrooxidans. Corrosion Engineering. 50 (9): 585-596.
[18] Uno, Y., Kaneeda, T. and Yokomizo, S. 1996. Fundamental study on biomachining: machining of metals by Thiobacillus Ferrooxidans. JSME international Journal. Ser. C, Dynamics, control, robotics, design and manufacturing. 39 (4): 837-842.
[19] Zhang, D. and Li, Y. 1998. Possibility of biological micromachining used for metal removal. Science in ChinaSeries C: Life Sciences, 41 (2): 151-156.
[20] Hocheng, H., Chang, J., Hsu, H., Chang, Y.L. and Jadhav, U.U. 2012. Metal removal by Acidithiobacillus ferrooxidans through cells and extra-cellular culture supernatant in biomachining. CIRP Journal of Manufacturing Science and Technology. 5 (2): 137-141.