Design and Simulation of a 20-Watt Doherty Power Amplifier at a frequency of 2.14 GHz for wireless communication systems
Subject Areas : Renewable energyShaban Rezaei Borjlu 1 , Hossein Alibagheri 2
1 - Department of Electrical & Computer Engineering,Science and Research Branch,
Islamic Azad University of Ashtian, Iran
2 - University
Keywords: Efficiency, Invertebrate amplifier, power efficiency, GaAs-pHEMT technology,
Abstract :
In this study, a symmetrical doherty power amplifier was designed and simulated at a frequency of 2.14 GHz with high power added efficiency and output power of 20-watts. Doherty Power Amplifier generally consist of two separate power amplifiers. The main power amplifier enhancer is designed and developed in the AB class. Auxiliary power amplifier is designed in class C. To divide the power between the two amplifiers equally, a symmetric Wilkinson power distribution is used. Finally, using a load modulation method, a suitable power coupler is designed and simulated to combine the proper output of two amplifiers. Using the MRFG351010 transistor as an active component with GaAs-pHEMT technology, the maximum output power of 20-watts is achieved at a maximum output of 65.46% and power gain of 8.56dB. The maximum output power and power added efficiency in the saturation region of the transistor with 6dB output back off (OBO) is 36dBm and 25.3%, respectively.
[1] C. Paolo, F. Giannini, R. Giofre, and L. Piazzon. "The Doherty power amplifier." Advanced Microwave Circuits and Systems, 2010.
[2] T. Torii, S. Imai, H. Maehara, T. Kunii, T. Morimoto, A. Inoue, "60% PAE, 30W X-band and 33% PAE, 100W Ku-band PAs utilizing 0.15 μm GaN HEMT technology", Proceeding of the IEEE/EuMC, London, UK, 2016.
[3] S. Rezaei Borjlu, D. Asemani, M. Dousti, "A highly efficient concurrent dual‐band GaN class‐AB power amplifier at 1.84 GHz and 3.5 GHz." International Journal of RF and Microwave Computer ‐Aided Engineering , Vol.27, No.9, 2017.
[4] S. Rezaei Borjlu, D. Asemani, M. Dousti, "Concurrent dual-band Doherty power amplifier using a novel dual-band bandpass filter for wireless technologies", Analog Integrated Circuits and Signal Processing, Vol. 96, No. 3, 395-408, 2018.
[5] Y. Komatsuzaki, K. Nakatani, S. Shinjo, S. Miwa, R. Ma, K. Yamanaka, “3.0–3.6 GHz wideband, over 46% average efficiency GaN Doherty power amplifier with frequency dependency compensating circuits", Proceeding of the IEEE/PAWR, pp. 22-24, 2017.
[6] C. Huang, S. He, Z. Dai, J. Pang, Z. Hu, “A 80W high gain and broadband Doherty power amplifier for 4/5G wireless communication systems", Proceeding of the IEEE/IMS, San Francisco, CA, USA, 2016.
[7] P. Guo, W. Kong, J. Xia, L. Yang, "Wideband doherty power amplifier using suitable peaking output matching network", Proceeding of the IEEE/APMC, Vol. 1, Nanjing, China, 2015.
[8] Y. Yutaro, et al. "A CW 20W Ka-band GaN high power MMIC amplifier with a gate pitch designed by using one-finger large signal models", Proceeding of the IEEE/CSICS, Miami, FL, USA, 2017.
[9] P. Saad, P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, C. Fager, "Design of a concurrent dual-band 1.8–2.4-GHz GaN-HEMT doherty power amplifer", IEEE Trans. on Microwave Theory and Techniques, Vol. 60, No. 6, June 2012.
[10] M.M. Tarar; "Design and implementation of an asymmetric doherty power amplifier at 2.65 GHz in GaN HEMT technology", Institutionen for systems engineering Department of Electrical Engineering, Degree project carried out in Electronic Components at the Linköoping Institute of Technology,seweden, 19 September, 2011.
_||_