2D-DOA Estimation of LFM Signal Wideband Using Low Snapshots Dechirping Algorithm in a Two-Dimensional Circular Array
Subject Areas : Renewable energyAbbas Partovi Sangi 1 , Jasem Jamali 2 , Mohammad Hossein Fatehi 3 , Mohammad Mehdi Ghanbarian 4
1 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
2 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
3 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
4 - Department of Electrical Engineering- Kazerun Branch, Islamic Azad University, Kazerun, Iran
Keywords: 2D-DOA wideband estimation, FrFt transform, 2D circular array, Dechirp algorithm, linear frequency modulation signals, modified-ESPRIT method,
Abstract :
Wideband linear frequency modulation (LFM) signals are widely used in systems such as radar, sonar, and mobile. 2D-DOA algorithms for LFM signals are relying on a large number of snapshots. For this reason, they are not suitable for low-power applications. In this paper, we present an algorithm-centered estimation method with low estimation of signal parameters via rotational invariance technique (ESPRIT) calculations based a 2D circular array using a fractal Fourier transform (FrFT). Furthermore, the utilization of a circular array facilitates the two-dimensional DOA calculation. Therefore, the procedure is that firstly, we develop the Dechirping process for LFM signals using the FrFT; secondly, we extend the ESPRIT algorithm- as used for linear arrays (ULA) - for 2D circular arrays (UCA). Finally, DOA calculations are made for a low number of snapshots with low computational volume. The simulation results of the proposed MESPRIT (i.e. modified ESPRIT) algorithm show that this algorithm outperforms compared to other algorithms like MUSIC and TSFDOA. We also have shown that the proposed method has an acceptable accuracy in low SNRs and creates less error in high SNRs. It was also demonstrated that for all algorithms, accuracy of azimuth angle is better than the elevation angle’s.
[1] B. R. Jackson, S. Rajan, B. J. Liao, S. Wang, "Direction of arrival estimation using directive antennas in uniform circular arrays", IEEE Trans. on Antennas and Propagation, vol. 63, no. 2, pp. 736-747, Feb. 2015 (doi: 10.1109/TAP.2014.2384044).
[2] C. Gu, H. Hong, Y. Li, X. Zhu, J. He, "Highly accurate multi-invariance ESPRIT for DOA estimation with a sparse array", Mathematical Problems in Engineering, Article Number: 5325817, pp. 1-7, Feb. 2019 (doi: 10.1155/2019/5325817).
[3] J. Xu, B. Sun, Y. Cao, W. Hong, "DOA estimation based on fractional low-order multi-sensor time-frequency analysis in heavy tailed noise", Journal of Physics: Conference Series, Bristol, vol. 1812, no. 1, Feb 2021 (doi: 10.1088/1742-6596/1812/1/012007).
[4] Z. Li, L. Song, H. Shi, "Approaching the capacity of k-user MIMO interference channel with interference counteraction scheme", Ad Hoc Networks, vol. 58, pp. 286-291, April. 2017 (doi: 10.1016/j.adhoc.2016.02.009).
[5] R. Mulinde, M. Kaushik, D. W. Dissanayake, M. attygalle, T. Chan, S. W. Ho, S. M. Aziz, "DOA estimation of wideband LFM RADAR signals", Proceeding of the IEEE/RADAR, pp. 1-6, Toulon, France, Sept. 2019 (doi: 10.1109/RADAR41533.2019.171357).
[6] L. Zhang, C. Y. Hung, J. Yu, K. Liu, "Linear chirp signal DOA estimation using sparse time–frequency dictionary", International Journal of Wireless Information Networks, vol. 27, pp. 568–574, Dec 2020 (doi: 10.1007/s10776-020-00489-1).
[7] A. Avokh, H.R. Abutalebi, "Speech enhancement using linearly constrained adaptive constant irectivity beam-formers", Applied Acoustics, vol. 71, no. 3, pp. 262-268, Mar. 2010 (doi: 10.1016/j.apacoust.2009.09.004).
[8] E. Dubrovinskaya, V. Kebkal, O. Kebkal, K. Kebkal, P. Casari, "Underwater localization via wideband direction-of-arrival estimation using acoustic arrays of arbitrary shape", Sensors, vol. 20, no. 14, July 2020 (doi:10.3390/s20143862).
[9] P. Stoica, P. Babu, J. Li, "New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data", IEEE Trans. On Signal Processing, vol. 59, no. 1, pp. 35–47, Jan. 2011 (doi: 10.1109/TSP.2010.2086452).
[10] P. Luo, K. Liu, W. Shi, G. Yan, "2-D DOA estimation of wideband LFM signals for arbitrary planar array", Proceeding of the IEEE/ICOSP, pp. 307–310, Beijing, China, Oct. 2010 (doi: 10.1109/ICOSP.2010.5656080).
[11] J. Xu, L. Lan, X. He, S. Zhu, C. Zeng, G. Liao, Y. Zhang, "System design and signal processing for frequency diverse array radar", Journal of Beijing Institute of Technology, vol. 30, no. 1, pp. 1-19, Mar. 2021 (doi: 10.15918/j.jbit1004-0579.2021.004).
[12] W. Du, D. Su, S. Xie, H.T. Hui, "A fast calculation method for the receiving mutual impedances of uniform circular arrays", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp 893–896, Aug. 2012 (doi: 10.1109/LAWP.2012.2211329).
[13] P. Wang, Y. Li, B. Vucetic, "Millimeter wave communications with symmetric uniform circular antenna arrays", IEEE Communications Letters, vol. 18, no. 8, pp. 1307–1310, July 2014 (doi: 10.1109/LCOMM.2014.2332334).
[14] Z. Zhang, H. Wang, H. Yao, "Time reversal and fractional fourier fransform-based method for LFM signal detection in underwater multi-path channel", Applied Sciences, vol. 11, no. 2, Article Number: 583, Jan. 2021 (doi: 10.3390/app11020583).
[15] G. Ben, X. Zheng, Y. Wang, N. Zhang, X. Zhang, "A local search maximum likelihood parameter estimator of chirp signal", Applied Sciences, vol. 11, no. 2, Article Number: 673, Jan. 2021 (doi: 10.3390/app11020673).
[16] M. Wang, X. Ma, S. Yan, C. Hao, "An auto calibration algorithm for uniform circular array with unknown mutual coupling", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 12–15, April 2015 (doi: 10.1109/LAWP.2015.2425423).
[17] Y.J. Pan, X.F. Zhang, S.Y. Xie, J.J. Huang, "An ultra-fast DOA estimator with circular array interferometer using lookup table method", Radioengineering, vol. 24, no. 8, pp. 850–856, Sept. 2015 (doi: 10.13164/re.2015.0850).
[18] J. Vineet, W. Dale-Blair, "Filter design for steady-state tracking of maneuvering targets with LFM waveforms", IEEE Trans. on Aerospace and Electronic Systems, vol. 45, no. 2, pp. 765–773 (doi: 10.1109/TAES.2009.5089558).
[19] P. Wang, H. Li, I. Djurović, B. Himed, "Integrated cubic phase function for linear FM signal analysis", IEEE Trans. on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 963–977, Aug. 2010 (doi: 10.1109/TAES.2010.5545167).
[20] M. Khodja, A. Belouchrani, K. Abed-Meraim, "Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors", EURASIP Journal on Advances in Signal Processing, vol. 2012, no. 1, pp. 1–11, Dec. 2012 (doi: 10.1186/1687-6180-2012-94).
[21] J. Lin, X. Ma, S. Yan, C. Hao, "Time-frequency multiinvariance esprit for DOA estimation", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 770–773, Aug. 2015 (doi: 10.1109/LAWP.2015.2473664).
[22] H. Zhang, G. Bi, Y. Cai, S. Gulam-Razul, C. Meng-Samson-See, "DOA estimation of closely-spaced and spectrally-overlapped sources using a STFT-based MUSIC algorithm", Digital Signal Processing, vol. 52, pp. 25–34, May 2016 (doi: 10.1016/j.dsp.2016.01.015).
[23] Y. Wei, W.S. Yao, "FRFT based method to estimate DOA for wideband signal", Advanced Materials Research, 2013, vol. 712-715, pp. 2716–2720, June 2013 (doi: 10.4028/www.scientifiv.net/AMR.712-715.2716).
[24] Y. Cui, J. Wang, "Wideband LFM interference suppression based on fractional Fourier transform and projection techniques", Circuits Systems and Signal Process, vol. 33, no. 2, pp. 613–627, Feb. 2014 (doi: 10.1007/s00034-013-9642-z).
[25] R. Tao, N. Zhang, Y. Wang, "Analyzing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar", IET Radar, Sonar and Navigation, vol. 5, no. 1, pp. 12–22, Feb. 2011 (doi: 10.1049/iet rsn.2019.0265).
[26] J. Su, H.H. Tao, X. Rao, J. Xie, X.L. Guo, "Coherently integrated cubic phase function for multiple LFM signals analysis", Electronics Letters, vol. 51, no. 5, pp. 411–413, Mar. 2015 (doi: 10.1049/el.2014.4164).
[27] K.B. Cui, W.W. Wu, X. Chen, J.J. Huang, Y. Niingning, "2-D DOA estimation of LFM signals based on dechirping algorithm and uniform circle array", Radioengineering, vol 26, no. 1, pp. 299-308, April 2017 (doi: 10.13164/re.2017.0299).
[28] Y. Xie, M. Huang, Y. Zhang, T. Duan, C. Wang, "Two-stage fast DOA estimation based on directional antennas in conformal uniform circular array", Sensors, vol. 21, no. 1, Jan. 2021 (doi: 10.3390/s21010276).
[29] H. Chung, Y. M-Park, S. Kim, "Wideband DOA estimation on co-prime array via atomic norm minimization", Energies, vol. 13, no. 12, June 2020 (doi: 10.3390/en13123235).
[30] L. Peng, L. Kai-hua, S. Wei-guang, Y. Ge, "2-D DOA estimation of wideband LFM signals for arbitrary planar array", Proceeding of the IEEE/ICOSP, pp. 307-310, Beijing, China, Oct. 2010 (doi: 10.1109/ICOSP.2010.5656080).
[31] K. Cui, X. Zhang, X. Chen, Q. Wang, N. Yuan, "2D DOA estimation of LFM sources using FRFT-based and mode-space-based algorithm," Proceeding of the IEEE/ICMMT, pp. 1-3, Guangzhou, China, Feb. 2020 (doi: 10.1109/ICMMT45702.2019.8992510).
_||_