Synthesis of 4-(trifluoromethyl) coumarins using nano sulfated-titania as solid acid catalyst under solvent-free conditions
محورهای موضوعی : Iranian Journal of CatalysisMona Hosseini-Sarvari 1 , Sepideh Najafvand-Derikvandi 2
1 - Department of Chemistry, Shiraz University, Shiraz 71454, I.R. Iran.
2 - Department of Chemistry, Shiraz University, Shiraz 71454, I.R. Iran.
کلید واژه: Solvent-free condition, Coumarins, Pechmann reaction, Nano sulfated-titania,
چکیده مقاله :
Nano sulfated titania was tested as solid acid heterogeneous catalyst for the synthesis of 4-(Trifluoromethyl) coumarin and coumarin derivatives under solvent-free condition. Factorial design evidenced a positive effect of reaction temperature, amount of catalyst, and solvents. This nano-sized sulfated titania has been prepared by a sol-gel hydrothermal process. The prepared sulfated titania showed high catalytic activity in the synthesis of 4-(Trifluoromethyl) coumarin and coumarin derivatives. This method is of great value because of its environmentally benign character, easy handling, high yields, convenient operation, and green. FT-IR studies show that the catalyst can be reused for acylation without loss of catalytic activity.
[1] R.O. Kennedy, R.D. Zhorenes, Coumarins: Biology, Applications and Mode of Action, John Wiley and Sons, Chichester, 1997.
[2] R.D. Murray, J. Mend, S.A. Brown, Natural Coumarins: Occurrence, Chemistry and Biochemistry, John Wiley, New York, 1982.
[3] T. Robinson, Organic Constituent of Higher plants. Their Chemistry and Interrelationships, 2nd ed. Burgess publishing company, Minneapolis, MN, 1967.
[4] G. Cravotto, G.M. Nano, G. Palmisano, S. Tagliapietra, Tethedron: Asymmetry 12 (2001) 707–709.
[5] J.Y. Yeh, M.S. Coumar, J.T. Horng, H.Y. Shiao, F.M. Kuo, H.L. Lee, I.C. Chen, C.W. Chang, W.F. Tang, S.N. Tseng, C.J. Chen, S.R. Shih, J.A. Hsu, C.C. Liao, Y.S. Chao, H.P. Hsieh, J. Med. Chem. 53 (2010) 1519-1533.
[6] C.J. Wang, Y.J. Hsieh, C.Y. Chu, Y.L. Lin, T.H. Tseng, Cancer Lett. 183 (2002) 163-168.
[7] G.J. Fan, W. Mar, M.K. Park, E. Wook-Choi, K. Kim, S. Kim, Bioorg. Med. Chem. Lett. 11 (2001) 2361-2363.
[8] S. Kirkiacharian, D.T. Thuy, S. Sicsic, R. Bakhchinian, R. Kurkjian, T. Tonnaire, Farmaco 57 (2002) 703-708.
[9] H.V. Pechmann, C. Duisberg, Chem. Ber. 17 (1884) 929-936.
[10] J.K. Augustine, A. Bombrun, B. Ramappa, C. Boodappa, Tetrahedron Lett. 53 (2012) 4422-4425.
[11] (a) S. Shanmuganathan, L. Greiner, P.D. de Maria Tetrahedron Lett. 51 (2010) 6670-6672. (b) A. Song, X. Wang, K. S. Lam, Tetrahedron Lett. 44 (2003) 1755-1558. (c) J. Han, Y. Xin, J. Zhao, S. Zhu, J. Fluorine Chem. 132 (2011) 409-413.
[12] D.C. Dittmer, Q. Li, D. V. Avilov, J. Org. Chem. 70 (2005) 4682-4686.
[13] P.K. Upadhyay, P. Kumar, Tetrahedron Lett. 50 (2009) 236-238.
[14] G.A. Cartwright, W. McNab, J. Chem. Res. S (1997) 296-297.
[15] J.A. Joule, K. Mills, Heterocyclic Chemistry, 4th edition, Blackwell Science, Oxford, UK, 2000.
[16] (a) H. Appel, J. Chem. Soc. (1935) 1031-1032. (b) L.L. Woods, J. Sapp, J. Org. Chem. 27 (1962) 3703-3705. (c) A.J. Nadkarni, N.A. Kudav, Ind. J. Chem. Sect. B. 20 (1981) 719-720. (d) A. Russell, J.R. Frye, Org. Synth. 21 (1941) 22-27. (e) H. Simmonis, P. Remmert, Chem. Ber. 47 (1914) 2229-2233. (f) A. Robertson, W.F. Sandrock, C.B. Henry, J. Chem. Soc. (1931) 2426-2432.
[17] (a) M.C. Laufer, H. Hausmann, W.F. Holderich, J. Catal. 218 (2003) 315-320. (b) R. Hinze, M.C. Laufer, W.F. Holderich, W. Bonrath, T. Netscher, Catal. Today 140 (2009) 105-111.
[18] N. Montazeri, S. Khaksar, A. Nazari, S.S. Alavi, S.M. Vahdat, M. Tajbakhsh, J. Fluorine Chem. 132 (2011) 450–452.
[19] B. Karimi, H. Behzadnia, Catal. Commun. 12 (2011) 1432-1436.
[20] J. Zhang, Y. Gu, Z. Duan, Y. Deng, Adv. Synth. Catal. 347 (2005) 512-516.
[21] A. Sinhamahapatra, N. Sutradhar, S. Pahari, H.C. Bajaj, A.B. Panda, Appl. Catal. A 394 (2011) 93-100.
[22] B. Karami, M. Kiani, Catal. Commun. 14 (2011) 62-67.
[23] Y. Zhang, A. Zhu, Q. Li, L. Li, Y. Zhao, J. Wang, RSC Adv. 4 (2014) 22946-22950.
[24] (a) S. Selvakumar, M. Chidambaram, A.P. Singh, Catal. Commun. 8 (2007) 777-783. (b) P. Kalita, R. Cumar. Microporous Mesoporous Mater. 149 (2012) 1-9.
[25] (a) A.J. Hoefnagel, E.A. Gunnewegh, R.S. Dowing, H.V. Bekkum, J. Chem. Soc. Chem. Commun. (1995) 225-226. (b) L. Wang, J. Xia, H. Tian, C. Qiam, Y. Ma, Indian J. Chem. Sect. B 42 (2003) 2097-2099. (c) K. Niknam, D. Saberi, M. Baghernejd, Chin. Chem. Lett. 20 (2009) 1444-1448. (d) B. Karimi, D. Zareyee, Org. lett. 10 (2008) 3989-3992. (e) Y. Kamiya, S. Sakata, Y. Yashiinaga, R. Ohnishi, T. Okuhara, Catal. Let. 94 (2004) 45-47.
[26] (a) M. Hosseini-Sarvari, E. Sodagar, M.M. Doroodmand, J. Org. Chem. 76 (2011) 2853-2859. (b) M. Hosseini-Sarvari, E. Safari, J. Sulf. Chem. 32 (2011) 463-473. (c) M. Hosseini-Sarvari, E. Safary, A. Jarrahpour, R. Heiran, Comp. Ren. Chimni 15 (2012) 980-987.
[27] H. Valizadeh, A. Shockravi, Tetrahedron Lett. 46 (2005) 3501-3503.
[28] N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Chin. Chem. Lett. 18 (2007) 1309-1312.
[29] P.G. Mandhane, R.S. Johsi, A.R. Ghawalkar, G.R. Jadhav, H.G. Charansingh, Bull. Korean Chem. Soc. 30 (2009) 2969-2972.
[30] G.M. Nazeruddin, M.S. Pandharpatte, K.B. Mulani, C. R. Chim. 15 (2012) 91-95.
[31] S.S. Bahekara, D.B. Shinde, Tetrahedron Lett. 45 (2004) 7999-8001.
[32] R.M. de Almeida, L.K. Noda, N.S. Goncalves, S.M.P. Meneghetti, M.R. Meneghetti, Appl. Catal. A. 347 (2008) 100.
[33] B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 286 (2008) 41-46.
[34] M.K. Potdar, S.S. Mohile, M.M. Salunkhe, Tetrahedron Lett. 42 (2001) 9285-9287.
[35] F. Kabiri Esfahani, D. Zareyee, R. Yousefi, ChemCatChem. 6 (2014) 3333–3337.
[36] M. Maheswara, V. Siddaiah, G.L. Vasantha Damu, Y.K. Rao, C.V. Rao, J. Mol. Catal. A: Chem. 255 (2006) 49–52.
[37] K. Niknam, S.A. Sajadi, R. Hosseini, M. Baghernejad, Iran. J. Catal. 4 (2014) 163-173.
[38] K. Niknam, D. Saberi, M. Baghernejad, Chin. Chem. Lett. 20 (2009) 1444-1448.
[39] A. Wang, X. Liu, Z. Su, H. Jing, Catal. Sci. Technol. 4 (2014) 71–80.