One-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by zinc zirconium phosphate in solvent-free conditions
محورهای موضوعی : Iranian Journal of Catalysis
1 - Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
کلید واژه: Nanoparticles, Multi-component reactions, Solvent-free, Zinc zirconium phosphate, Solid catalyst,
چکیده مقاله :
A simple and efficient procedure for the synthesis of 2-amino-3-cyanopyridines from aldehydes, ketones, malononitrile, and ammonium acetate via one-pot reaction is reported. Zinc zirconium phosphate (ZPZn) nanoparticles were used as a convenient and efficient catalyst for this multicomponent reaction (MCR) under solvent-free conditions, and fair to excellent yields were achieved. The catalyst was characterized by ICP-OES, XRD, NH3-TPD, Py-FTIR, N2 adsorption-desorption, SEM, and TEM. The steric and electronic properties of the different substrates had a significant influence on the reaction conditions. The catalyst was recovered and reused at least six times without any discernible decrease in its catalytic activity. This procedure tolerates most of the substrates and has the advantages of short reaction times, high yields, and environmentally friendly.
[1] B.H. Rotstein, S. Zaretsky, V. Rai, A.K. Yudin. Chem. Rev. 114 (2014) 8323-8359.
[2] H.R. Shaterian, M. Arman, F. Rigi. J. Mol. Liquid. 158 (2011) 145–150.
[3] A. Dömling, Chem. Rev. 106 (2006) 17-89
[4] S. Grasso, G. DeSarro, N. Micale, M. Zappala, G. Puia, M. Baraldi, C. Demicheli. J. Med. Chem. 43 (2000) 2851–2859
[5] Y. Nomoto, H. Obase, H. Takai, M.Teranishi, J. bNakamura, K. Kubo. Studies. Chem. Pharm. Bull. 38 (1990) 2179–2182.
[6] N. Watanabe, Y. Kabasawa, Y. Takase, M. Matsukura, K. Miyazaki, H. Ishihara, K. Kodama, H. Adachi, J. Med. Chem. 41 (1998) 3367–3372.
[7] S. Sarda, J. Kale, S. Wasmatkar, V. Kadam, P. Ingole, W. Jadhav, R. Pawar. Mol. Divers. 13 (2009) 545-549.
[8] S. Brauch, S.S.v. Berkel, B. Westermann, Chem. Soc. Rev. 42 (2013) 4948-4962
[9] S. Ayvaz, M. Çankaya, A. Atasever, A. Altuntas. J. Enzyme Inhib. Med. Chem. 28 (2013) 305-310.
[10] M.A. Gouda, M.A. Berghot, G.E. Abd El Ghani, A.E.G.M. Khalil. Synth. Commun. 44 (2013) 297-330.
[11] F. Shi, S. Tu, F. Fang, T. Li. Arkivoc I (2005) 137-142.
[12] J. Tang, L. Wang, Y. Yao, L. Zhang, W. Wang. Tetrahedron Lett. 52 (2011) 509-511.
[13] M. Zadpour, F. Behbahani. Monatsh. Chem. 146 (2015) 1865–1869.
[14] R. Ghorbani-Vaghei, Z. Toghraei-Semiromi, R. Karimi-Nami. C.R. Chim. 16 (2013) 1111-1117.
[15] A.A. Dissanayake, R.J. Staples, A.L. Odom. Adv. Synth. Catal. 356 (2014) 1811-1822.
[16] S.S. Mansoor, K. Aswin, K. Logaiya, S.P.N. Sudhan. J. Saudi Chem. Soc. 20 (2016) 517–522.
[17] S. Mansoor, K. Aswin, K. Logaiya, P. Sudhan, S. Malik. Res. Chem. Intermed. 40 (2014) 871-885.
[18] J. Safari, S.H. Banitaba, S.D. Khalili. , Ultrason. Sonochem. 19 (2012) 1061-1069.
[19] R. Gupta, A. Jain, M. Jain, R. Joshi. Bull. Korean Chem. Soc. 31 (2010) 3180.
[20] K. Niknam, A. Jamali, M. Tajaddod, A. Deris. Chin. J. Catal. 33 (2012) 1312-1317.
[21] S. Khaksar, M. Yaghoobi. J. Fluorine Chem. 142 (2012) 41-44.
[22] A.S. Girgis, A. Kalmouch, H.M. Hosni. Amino Acids. 26 (2004) 139-146.
[23] A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar, H.C. Bajaj, A.B. Panda. Appl. Catal. A. 385 (2010) 22-30.
[24] A. Tarafdar, A.B. Panda, N.C. Pradhan, P. Pramanik. Microporous Mesoporous Mater. 95 (2006) 360-365.
[25] H. Karimi. J. Chin. Chem. Soc. 62 (2015) 604-613.
[26] A. Diaz, M.L. Gonzalez, R.J. Perez, A. David, A. Mukherjee, A. Baez, A. Clearfield, J.L. Colon. Nanoscale 5 (2013) 11456-11463.
[27] F. Ziarelli, M. Casciola, M. Pica, A. Donnadio, F. Aussenac, C. Sauvee, D. Capitani, S. Viel. Chem. Commun. 50 (2014) 10137-10139.
[28] D. Li, Y. Zhang, B. Zhou. J. Solid State Chem. 225 (2015) 427-430.
[29] V. Saxena, A. Diaz, A. Clearfield, J.D. Batteas, M.D. Hussain. Nanoscale 5 (2013) 2328-2336.
[30] S. Tahara, Y. Takakura, Y. Sugahara. Chem. Lett. 41 (2012) 555-557.
[31] H. Gan, X. Zhao, B. Song, L. Guo, R. Zhang, C. Chen, J. Chen, W. Zhu, Z. Hou. Chin. J. Catal. 35 (2014) 1148-1156.
[32] M. Shuai, A.F. Mejia, Y.-W. Chang, Z. Cheng. Cryst. Eng. Comm. 15 (2013) 1970-1977.
[33] S. Khare, R. Chokhare. J. Mol. Catal. A: Chem. 353-354 (2012) 138-147.
[34] Q. Wang, J. Yu, J. Liu, Z. Guo, A. Umar, L. Sun. Sci. Adv. Mater. 5 (2013) 469-474.
[35] S. Allulli, C. Ferragina, A. La Ginestra, M.A. Massucci, N. Tomassini, A.A. Tomlinson. J. Chem. Soc., Dalton Trans. (1976) 2115-2120.
[36] H. Patel, U. Chudasama. J. Chem. Sci. 119 (2007) 35-40.
[37] A.H. Naik, S.B. Deb, A.B. Chalke, M.K. Saxena, K.L. Ramakumar, V. Venugopal, S.R. Dharwadkar. J. Chem. Sci. 122 (2010) 71-82.
[38] P. Giannoccaro, M. Gargano, A. Fanizzi, C. Ferragina, M. Aresta. Appl. Catal. A. 284 (2005) 77-83.
[39] X. Cai, G.-J. Dai, S.-Z. Tan, Y. Ouyang, Y.-S. Ouyang, Q.-S. Shi. Mater. Lett. 67 (2012) 199-201.
[40] Y. Yang, G. Dai, S. Tan, Y. Liu, Q. Shi, Y. Ouyang. J. Rare Earths 29 (2011) 308-312.
[41] G. Dai, A. Yu, X. Cai, Q. Shi, Y. Ouyang, S. Tan. J. Rare Earths 30 (2012) 820-825.
[42] Q.R. Zhang, W. Du, B.C. Pan, B.J. Pan, W.M. Zhang, Q.J. Zhang, Z.W. Xu, Q.X. Zhang. J. Hazard. Mater. 152 (2008) 469-475.
[43] U. Costantino, L. Szirtes, E. Kuzmann, J. Megyeri, K. Lázár. Solid State Ionics 141-142 (2001) 359-364.
[44] S. Khare, R. Chokhare. J. Mol. Catal. A: Chem. 344 (2011) 83-92.
[45] X.Y. Wang, W.M. Hua, Y.H. Yue, Z. Gao. Chem. Res. Chin. Univ. 34 (2013) 1913-1918.
[46] M. Gawande, S. Deshpande, S. Sonavane, R. Jayaram J. Mol. Catal. A: Chem. 241 (2005) 151-155.
[47] A. Pylinina, I. Mikhalenko. Russ. J. Phys. Chem. 87 (2013) 372-375.
[48] B. Liu, C. Ba, M. Jin, Z. Zhang. Ind. Crops Prod. 76 (2015) 781-786.