The role of carburization temperature on the molybdenum carbide surface and their catalytic activity
محورهای موضوعی : Iranian Journal of Catalysis
1 - Department of Chemical Sciences, Faculty of Science, Adekunle Ajasin University, Akungba Akoko, Nigeria.
کلید واژه: reduction, Oxidation, Activity, Hydroisomerization, Carburisation temperature,
چکیده مقاله :
The surfaces of molybdenum carbide were varied by changing the carburization temperature between 823 and 1123 K. The surfaces of the catalytic material were investigated using in-situ temperature program carburization followed by temperature program reduction and oxidation. In-situ temperature program oxidation (TPO) showed the surfaces of the catalysts contain a similar amount of carbonaceous deposit, while temperature program reduction (TPR) showed their ability to consume hydrogen in different amounts. The result shows the surface of the carbide at 823 K contained oxygen, while those carburized at higher temperature (≥ 923 K) were pure carbide. The catalysts tested for hydroisomerization of n-heptane and the catalyst with oxycarbide surface showed higher activity and iso-heptane selectivity. Hence, carburization temperature plays a crucial role in the formation of an active catalyst.
[1] J.B. Claridge, A.P.E. York, A.J. Brungs, J. Catal. 100 (1998) 85–100.
[2] J.S. Lee, S.T. Oyama, M. Boudart, J. Catal. 133 (1987) 125–133.
[3] W. Wu, Z. Wu, C. Liang, J. Phys. Chem. B 107 (2003) 7088–7094.
[4] Z. Li, C. Chen, E. Zhan, Chem. Commun. 50 (2014) 4469-4471.
[5] A. Galadima, R.P.K. Wells, J.A. Anderson, Appl. Petrochem. Res. 1 (2012) 35–43.
[6] S.T. Oyama, C.C. Yu, S. Ramanathan, J. Catal. 184 (1999) 535–549.
[7] J.S. Lee, S. Locatelli, S.T. Oyam, M. Boudart, J. Catal. 125 (1990) 157–170.
[8] T.C. Xiao, A.P.E. York, V.C. Williams, Chem. Mater. 12 (2000) 3896–3905.
[9] P. Del Gallo, C. Pham-Huu, A.P.E. York, M.J. Ledoux, Ind. Eng. Chem. Res. 35 (1996) 3302–3310.
[10] E.A. Blekkan, C. Pham-Huu, M.J. Ledoux, J. Guille, Ind. Eng. Chem. Res. 33 (1994) 1657–1664.
[11] C. Pham-Hun, P. Del Gallo, E. Peschiera, M.J. Ledoux, Appl. Catal. A 132 (1995) 77–96.
[12] M.J. Ledoux, C. Pham-Huu, A.P.E. York, The Chemistry of Transition Metal Carbides and Nitrides, S.T. Oyama, Ed., Blackie New York, 1996, pp. 373–397.
[13] F.F. Oloye, A.J. McCue, J.A. Anderson, Catal. Today 277 (2016) 246-256.
[14] C. Bouchy, C. Pham-Huu, B. Heinrich, Appl. Catal. A 215 (2001) 175–184.
[15] M.J. Ledoux, P. Del Gallo, C. Pham-Huu, A.P.E. York, Catal. Today 27 (1996) 145–150.
[16] T. Matsuda, K. Watanabe, H. Sakagami, N. Takahashi, Adsorption 242 (2003) 267–274.
[17] T. Xiao, A.P.E. York, H. Al-Megren, C.R. Acad. Sci. Ser. IIc: Chim. 3 (2000) 451–458.
[18] C. Bouchy, C. Pham-Huu, B. Heinrich, J. Catal. 190 (2000) 92–103.
[19] N. Perret, X. Wang, L. Delannoy, J. Catal. 286 (2012) 172–183.
[20] F.F. Oloye, A.J. McCue, J.A. Anderson, Appl. Petrochem. Res. 6 (2016) 341-352.
[21] J. Song, Z.F. Huang, L. Pan, J.J. Zou, X. Zhang, L. Wang, ACS Catal. 5 (2015) 6594-6599.
[22] M.J. Ledoux, C. Pham-Huu, H. Dunlop, J. Guille, Stud. Surf. Sci. Catal. 75 (1993) 955-967.