Evaluation of Various Approaches in Prediction of Daily and Lactation Yields of Milk and Fat Using Statistical Models in Iranian Primiparous Holstein Dairy Cows
محورهای موضوعی : CamelM. Elahi Torshizi 1 , M. Hosseinpour Mashhadi 2
1 - Department of Animal Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 - Department of Animal Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
کلید واژه: lactation curve, wood function, daily milk and fat yield, test interval method, 305 day milk and fat yield,
چکیده مقاله :
In this research, 272977 test day records collected from 659 herds during years 2001 to 2011 by the Iranian animal breeding center were used. In the first section the ability of different models to predict daily milk yield from alternative milk recording was tested. The result showed that a complex model including noon milking time plus the effect of lactation curve of Ali and Schaeffer function is the best equation for prediction of daily milk yield. The highest correlation between true and estimated daily milk yield (0.892) and the lowest bias (2.391) were obtained using this method. Of the four models, the Ali and Schaeffer and the Wood models resulted in the best goodness of fit and gave a good description of the lactation curve (milk and fat yield) for dairy herds when test-day yield is used. Lastly, the most appropriate models for prediction of 305 d milk and fat yields were Ali and Schaeffer and Wood respectively. These models were able to predict milk and fat yields with the lowest residual mean square errors. Thus, the performance of models based on lactation curve functions were better than the test-interval method and the centering date method for prediction of 305-d milk and fat yield in Iranian primiparous Holstein cows.
در این تحقیق از 272977 رکورد روز آزمون گاوهای شیری از 659 گله مربوط به سالهای 2001 تا 2011 که توسط مرکز اصلاح دام کشور جمعآوری گردیده، استفاده شده است. در قسمت اول توانایی مدلهای مختلف برای پیشبینی تولید شیر روزانه با کمک رکوردهای صبح، ظهر و شب مورد ارزیابی قرار گرفت. نتایج نشان داد که مدلهای پیچیدهتر به همراه تابع شیردهی علی- شفر و وعده شیر ظهر، بهترین معادله را برای پیشبینی تولید شیر روزانه فراهم میآورند. بیشترین همبستگی بین (892/0) مقدار تولید شیر واقعی و پیشبینی شده و کمترین اریبی (391/2) با استفاده از این روش محاسبه گردید. از 4 مدل مورد استفاده در این مقاله، توابع علی-شفر و وود، بهترین برازش را از منحنی تولید شیر و چربی ارائه نمودند. و در نهایت به ترتیب بهترین توابع برای پیشبینی تولید شیر 305 روزه، توابع علی-شفر و وود بودند. این مدلها نسبت به بقیه توابع مورد استفاده قادر به پیشبینی تولید شیر و چربی با کمترین میانگین مربعات خطا شدند. بنابراین عملکرد توابع منحنی شیرواری در مقایسه با روش فاصله آزمونی و تاریخ آزمونی مرکزی برای پیشبینی تولید شیر و چربی 305 روزه گاوهای شیری شکم اول ایران بسیار دقیقتر است.
Akaike H. (1974). A new look at the statistical model identification. IEEE Trans. Auto. Control. 19, 716-723.
Dijkstra J.J., France M.S., Dhanoa J.A., Maas M., Hanigan D., Rook A.J. and Beever D.E. (1997). A model to describe growth patterns of the mammary gland during pregnancy and lactation. J. Dairy Sci. 80, 2340-2354.
Dongre V.B., Gandhi R.S., Singh A. and Malhotra R. (2011). Prediction of first lactation 305-d fortnightly test day milk yields using lactation curves models in Sahiwal cattle. Int. J. Agric. Res. Rev. 1(2), 87-90.
Fracz A. and Ptak E. (2003). Prediction of 305 d milk yield of black and white cows using Ali and Schaeffer lactation curve model (in polish). Rocz. Nauk. Zoot. Supl. 17, 349-352.
Gantner V., Jovanovac S., Kovac M., Malovrh S. and Kompan D. (2006). VaFrious approaches to study daily milk yield prediction from alternative milk recording scheme. Acta Agraria Kaposvariensis. 10(2), 105-112.
Grzesiak W., Wojcik J. and Binerowska B. (2003). Prediction of 305-d first lactation milk yield in cows with selected regression models. Arch. Tierz. Dumm. 46(3), 215-226.
Grossman M. and Koops W.J. (1988). Multiphasic analysis of lactation curves in dairy cattle. J. Dairy Sci. 71, 1598-1608.
ICAR. (2003). International Committee for Animal Recording. ICAR Guidelines Approved by the General Assembly Held in Interlaken.
ICAR. (2011). International Committee for Animal Recording. Guidelines Approved by the General Assembly Held in Riga.
Javanovac S., Gantner V., Kuterovac K. and Klopcic M. (2005). Comparison of statistical models to estimate daily milk yield in single milking testing schemes. Italian J. Anim. Sci. 4, 27-29.
Kompan D., Gantner V., Kovac M., Klopcic M. and Jovanovac S. (2006). Estimation of daily milk yield from alternative milk recording schemes in dairy sheep. Acta Agraria Kaposvariensis. 10, 169-176.
Koonawootrittriron S., Elzo M., Tumwason M. and Sintala W. (2001). Prediction of 100-d and 305-d milk yield in multibreed dairy herd in Thailand using monthly test-day records. Availabl in: www.animal.ifas.ufl.edu.
Liu Z., Reents R., Reinhardt F. and Kuwan K. (2000). Approaches to estimating daily yield from single milking testing schemes and use of a.m-p.m. records in test-day model genetic evaluation in dairy cattle. J. Dairy Sci. 83, 2672-2682.
Macciotta N.P.P., Miglior F., Cappio-Borlino A. and Schaeffer L.R. (2007). Fitting different functions to the individual deviations in the random regression test day models for milk yield in dairy cattle. Italian J. Anim. Sci. 6, 153-155.
McDaniel B.T. (1969). Accuracy of sampling procedures for estimating lactation yields: a review. J. Dairy Sci. 52, 1742-1761.
Otwinowska-mindut A., Ptak E., Jagusiak W. and Satola A. (2014). Modeling lactation curves of polish Holstein-Friesian cows. Part II. Prediction of 305 d lactation milk, fat and protein yields. J. Anim. Feed Sci. 23, 29-36.
Pool M.H. and Meuwissen T. (1999). Prediction of daily milk yields from a limited number of test days using test day model. J. Dairy Sci. 82, 1555-1564.
Ptak E., Satola A. and Czaja H. (2004). Prediction of 305-day lactation milk, fat and protein yields using Legendre polynomials and test day yields from different parts of lactation. Anim. Sci. Pap. Reprod. 2, 173-183.
Sajjad Khan M. and Iqbal J. (1999). Lactation length adjustment. Int. J. Agric. Sci. Biol. 1, 179-183.
SAS Institute. (2005). The SAS System for Windows, Version 8.2. Cary, NC.
Scott T.A., Yandell B., Zepeda L., Shaver R.D. and Smith T.R. (1996). Use of lactation curves for analysis of milk production data. J. Dairy Sci. 79, 1885-1894.
Schaeffer L.R. and Jamrozik J. (1996). Multiple-trait prediction of lactation yields for dairy cows. J. Dairy Sci. 38, 2044-2055.
Schaeffer L.R., Jamrozik J., Van Drop R., Kelton D.F. and Lazenby D.W. (2000). Estimating daily yields of cows from different milking schemes. Livest. Prod. Sci. 65, 219-227.
Silvestre A.M., Petim-Batista F. and Colaco J. (2006). The accuracy of seven mathematical functions in modeling dairy cattle lactation curves based on test-day records from varying sample schemes. J. Dairy Sci. 89, 1813-1821.
Swalve H.H. (2000). Theoretical basis and computational methods for different test-day genetic evaluation methods. J. Dairy Sci. 83, 1115-1124.
Vasconcelos J., Martins A., Petim-Batista M.F., Colaco J., Blake R.W. and Carvalheira J. (2004). Prediction of daily and lactation yields of milk, fat and protein using an autoregressive repeatability test day model. J. Dairy Sci. 87, 2591-2598.
Wilmink J.B.M. (1987). Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. Livest. Prod. Sci. 16, 335-348.
Wood P.D.P. (1967). Algebraic model of the lactation curve in cattle. Nature. 216, 164-165.