The Potential Use of Essential Oil Nanoemulsion as a Novel Alternative to Antibiotics in Poultry Production-A Review
محورهای موضوعی : Camelآ.پ. باسکارا 1 , ب. آریادی 2 , ن.ر. دونو 3 , ر. مارتین 4 , ز. زوپریزال 5
1 - Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, Indonesia
2 - Department of Animal Production, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, Indonesia
3 - Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, Indonesia
4 - Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
5 - Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, Indonesia
کلید واژه: antibiotic, poultry, Nanoemulsion, Essential oil,
چکیده مقاله :
Antibiotics are commonly used due to their antimicrobial activity and widely used for promoting growth, preventing diseases or therapy in poultry. The misuse of antibiotics in livestock production induces resistant bacteria into the environment. Therefore, the need to develop alternatives to antibiotics become increasingly important, that protect and improve global public health. The phytobiotics especially essential oils are known to have antimicrobial activity, thus potentially as an alternative candidate to antibiotics. The volatile bioactive components contained in the essential oils, makes it possess that antimicrobial activity, yet the volatile bioactive components also become a limiting factor in essential oils application. Nanoemulsions carrier systems can be a solution to overcome that limiting factor. Nanoemulsion is increasingly being utilized for improving the bioavailability of certain types of volatile components which most of them are lipophilic substances. In this review, we are going to discuss the non-antibiotic alternative of plant essential oils, including current research in poultry nutrition, and the potential application of essential oils using nanoemulsion as an alternative candidate to antibiotics in poultry production.
Abd-Elsalam K.A. and Khokhlov A.R. (2015). Eugenol oil nanoemulsion: Antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl. Nanosci. 5, 255-265.
Acosta E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 14, 3-15.
Allen H.K., Levine U.Y., Looft T., Bandrick M. and Casey T.A. (2013). Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 21, 114-119.
Anwer M.K., Jamil S., Ibnouf E.O. and Shakeel F. (2014). Enhanced antibacterial effects of clove essential oil by nanoemulsion. J. Oleo Sci. 63, 347-354.
Bakkali F., Averbeck S., Averbeck D. and Idaomar M. (2008). Biological effects of essential oils: A review. Food. Chem. Toxicol. 46, 446-475.
Bilia A.R., Guccione C., Isacchi B., Righeschi C., Firenzuoli F. and Bergonzi M.C. (2014). Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid-Based Complementary. Altern. Med. 2014, 1-14.
Brewer M.S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10, 221-247.
Burt S. (2004). Essential oils: Their antibacterial properties and potential applications in food: A review. Int. J. Food Microbiol. 94, 223-253.
Butaye P., Devriese L.A. and Haesebrouck F. (2003). Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 16, 175-188.
Cabuk M., Bozkurt M., Alçiçek A., Akbas Y. and Küçükylmaz K. (2006). Effect of an herbal essential oil mixture on growth and internal organ weight of broilers from young and old breeder flocks. South African J. Anim. Sci. 36, 135-141.
Calo J.R., Crandall P.G., O'Bryan C.A. and Ricke S.C. (2015). Essential oils as antimicrobials in food systems: A review. Food Control. 54, 11-19.
Carson C.F., Mee B.J. and Riley T.V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46, 1914-1920.
Carvalho I.T. and Santos L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 94, 736-757.
Chakraborty S., Shukla D., Mishra B. and Singh S. (2009). Lipid-an emerging platform for oral delivery of drugs with poor bioavailability. European J. Pharm. Biopharm. 73, 1-15.
Chattopadhyay M.K. (2014). Use of antibiotics as feed additives: A burning question. Front. Microbiol. 5, 334-343.
Chaves A.V., He M.L., Yang W.Z., Hristov A.N., McAllister T.A. and Benchaar C. (2008). Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Canadian J. Anim. Sci. 88, 117-122.
Cheng G., Hao H., Xie S., Wang X., Dai M., Huang L. and Yuan Z. (2014). Antibiotic alternatives: The substitution of antibiotics in animal husbandry. Front. Microbiol. 5, 217-227.
Criste R.D., Panaite T.D., Tabuc C., Saracila M., Soica C. and Olteanu M. (2017). Effect of oregano and rosehip supplementson broiler (14-35 days) performance, carcass and internal organs development and gut health. AgroLife Sci. J. 6, 75-83.
Cross D.E., McDevitt R.M., Hillman K. and Acamovic T. (2007). The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. British Poult. Sci. 48, 496-506.
Davies J. and Davies D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417-433.
Diarra M.S. and Malouin F. (2014). Antibiotics in Canadian poultry productions and anticipated alternatives. Front. Microbiol. 5, 282-292.
Diaz-Sanchez S., Moscoso S., Solís de los Santos F., Andino A. and Hanning I. (2015). Antibiotic use in poultry: A driving force for organic poultry production. Food Prot. Trends. 35, 440-447.
El-Ghany W.A.A. and Ismail M. (2013). Tackling of experimental colisepticaemia in broiler chickens using phytobiotic essential oils and antibiotic alone or in combination. Res. J. Poult. Sci. 6, 59-67.
Ertas O.N., Güler T., Çiftçi M., Dalkilic B. and Simsek U.G. (2005). The effect of an essential oil mix derived from oregano, clove and anise on broiler performance. Int. Poult. Sci. 4, 879-884.
Frieri M., Kumar K. and Boutin A. (2017). Antibiotic resistance. J. Infect. Public. Health. 10, 369-378.
Ghasemi H.A., Kasani N. and Taherpour K. (2014). Effects of black cumin seed (Nigella sativa), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers. Livest. Sci. 164, 128-134.
Ghosh V., Saranya S., Mukherjee A. and Chandrasekaran N. (2013). Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: Investigation of its bactericidal activity. J. Nanosci. Nanotechnol. 13, 114-122.
Goossens H., Ferech M., Vander Stichele R. and Elseviers M. (2005). Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet. 365, 579-587.
Grashorn M.A. (2010). Use of phytobiotics in broiler nutrition: An alternative to infeed antibiotics? J. Anim. Feed Sci. 19, 338-347.
Guerra-Rosas M.I., Morales-Castro J., Cubero-Márquez M.A., Salvia-Trujillo L. and Martín-Belloso O. (2017). Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control. 77, 131-138.
Hashemi S.R. and Davoodi H. (2011). Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 35, 169-180.
Hashemi S.R., Zulkifli I., Hair-Bejo M., Farida A. and Somchit M.N. (2008). Acute toxicity study and phytochemical screening of selected herbal aqueous extract in broiler chickens. Int. J. Pharmacol. 4, 352-360.
Hernández F., Madrid J., García V., Orengo J. and Megías M.D. (2004). Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83, 169-174.
Hilbig J., Ma Q., Davidson P.M., Weiss J. and Zhong Q. (2016). Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80. Int. J. Food Microbiol. 233, 52-59.
Huyghebaert G., Ducatelle R. and Van Immerseel F. (2011). An update on alternatives to anti- microbial growth promoters for broilers. Vet. J. 187, 182-188.
Jamroz D., Wertelecki T., Houszka M. and Kamel C. (2006). Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. 90, 255-268.
Jamroz D., Wiliczkiewicz A., Wertelecki T., Orda J. and Skorupińska J. (2005). Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. British Poult. Sci. 46, 485-493.
Jang I.S., Ko Y.H., Kang S.Y. and Lee C.Y. (2007). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Technol. 134, 304-315.
Jayasena D.D. and Jo C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 34, 96-108.
Jerzsele A., Szeker K., Csizinszky R., Gere E., Jakab C., Mallo J.J. and Galfi P. (2012). Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 91, 837-843.
Joe M.M., Bradeeba K., Parthasarathi R., Sivakumaar P.K., Chauhan P.S., Tipayno S., Benson A. and Sa T. (2012). Development of surfactin based nanoemulsion formulation from selected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. J. Taiwan Inst. Chem. Eng. 43, 172-180.
Kamble V.A., Jagdale D.M. and Kadam V.J. (2010). Solid lipid nanoparticles as drug delivery system. Int. J. Pharma Bio Sci. 1, 1-9.
Kelly C., Gundogdu O., Pircalabioru G., Cean A., Scates P., Linton M., Pinkerton L., Magowan E., Stef L., Simiz E., Pet I., Stewart S., Stabler R., Wren B., Dorrell N. and Corcionivoschi N. (2017). The in vitro and in vivo effect of carvacrol in preventing Campylobacter infection, colonization and in improving productivity of chicken broilers. Foodborne Pathog. Dis. 14, 341-349.
Khameneh B., Diab R., Ghazvini K. and Fazly Bazzaz B.S. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 95, 32-42.
Khattak F., Ronchi A., Castelli P. and Sparks N. (2014). Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult. Sci. 93, 132-137.
Kohanski M.A., Dwyer D.J. and Collins J.J. (2010). How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 8, 423-435.
Kollanoor-Johny A., Mattson T., Baskaran S.A., Amalaradjou M.A., Babapoor S., March B., Valipe S., Darre M., Hoagland T., Schreiber D., Khan M.I., Donoghue A., Donoghue D. and Venkitanarayanan K. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Appl. Environ. Microbiol. 78, 2981-297.
Koščová J., Nemcová R., Gancarčíková S., Jonecová Z., Sciranková L., Bomba A. and Buleca V. (2006). Effect of two plant extracts and Lactobacillus fermentum on colonization of gastrointestinal tract by Salmonella enteric var. Dusseldorf in chicks. Biol. Brat. 61, 775-778.
Krishnamoorthy R., Athinarayanan J., Periasamy V.S., Adisa A.R., Al-Shuniaber M.A., Gassem M.A. and Alshatwi A.A. (2018). Antimicrobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb. Pathog. 120, 85-96.
Kumar S., Chen C., Indugu N., Werlang G.O., Singh M., Kim W.K. and Thippareddi H. (2018). Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One. 13, e0192450.
Landoni M.F. and Albarellos G. (2015). The use of antimicrobial agents in broiler chickens. Vet. J. 205, 21-27.
Lee K.W., Ho Hong Y., Lee S.H., Jang S.I., Park M.S., Bautista D.A., Ritter G.D., Jeong W., Jeoung H.Y., An D.J., Lillehoj E.P. and Lillehoj H.S. (2012). Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Res. Vet. Sci. 93, 721-728.
Lee K.W., Ecerts H. and Beynen A.C. (2004). Essential oils in broiler nutrition. Int. J. Poult. Sci. 3, 738-752.
Li H.L., Zhao P.Y., Lei Y., Hossain M.M. and Kim I.H. (2015). Phytoncide, phytogenic feed additive as an alternative to conventional antibiotics, improved growth performance and decreased excreta gas emission without adverse effect on meat quality in broiler chickens. Livest. Sci. 181, 1-6.
Liang R., Xu S., Shoemaker C.F., Li Y., Zhong F. and Huang Q. (2012). Physical and antimicrobial properties of peppermint oil nanoemulsions. J. Agric. Food Chem. 60, 7548-7555.
Lin J. (2014). Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers. Front. Microbiol. 5, 33-43.
Lu W.C., Huang D.W., Wang C.R., Yeh C.H., Tsai J.C., Huang Y.T. and Li P.H. (2018). Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 26, 82-89.
Maderuelo C., Zarzuelo A. and Lanao J.M. (2011). Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 154, 2-19.
Mahmoud S.S. and Croteau R.B. (2002). Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant. Sci. 7, 366-373.
Marquardt R.R. and Li S. (2018). Antimicrobial resistance in livestock: Advances and alternatives to antibiotics. Anim. Front. 8, 30-37.
Mason T.G., Wilking J.N., Meleson K., Chang C.B. and Graves S.M. (2006). Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Mat. 18, 635-666.
Mathew A.G., Cissell R. and Liamthong S. (2007). Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 4, 115-133.
McClements D.J. (2012). Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 8, 1719-1729.
McClements D.J. and Rao J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51, 285-330.
Mehdi Y., Létourneau-Montminy M.P., Gaucher M.L., Chorfi Y., Suresh G., Rouissi T., Brar S.K., Côté C., Ramirez A.A. and Godbout S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 4, 170-178.
Micciche A., Rothrock M.J., Yang Y. and Ricke S.C. (2019). Essential oils as an intervention strategy to reduce Campylobacter in poultry production: A review. Front. Microbiol. 10, 1-22.
Mitsch P., Zitterl-Eglseer K., Köhler B., Gabler C., Losa R. and Zimpernik I. (2004). The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult. Sci. 83, 669-675.
Moghimi R., Ghaderi L., Rafati H., Aliahmadi A. and McClements D.J. (2016). Superior antibacterial activity of nanoemulsion of thymus daenensis essential oil against E. coli. Food Chem. 194, 410-415.
Moraes-Lovison M., Marostegan L.F.P., Peres M.S., Menezes I.F., Ghiraldi M., Rodrigues R.A.F., Fernandes A.M. and Pinho S.C. (2017). Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. LWT Food Sci. Technol. 77, 233-240.
Mountzouris K.C., Paraskevas V., Tsirtsikos P., Palamidi I., Steiner T., Schatzmayr G. and Fegeros K. (2011). Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition. Anim. Feed. Sci. Technol. 168, 223-231.
Nabavi S.F., Di Lorenzo A., Izadi M., Sobarzo-Sánchez E., Daglia M. and Nabavi S.M. (2015). Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients. 7, 7729-7748.
Nair D.V.T. and Johny A.K. (2017). Food grade pimenta leaf essential oil reduces the attachment of Salmonella enterica Heidelberg (2011 ground turkey outbreak isolate) on to turkey skin. Front. Microbiol. 8, 1-15.
Natrajan D., Srinivasan S., Sundar K. and Ravindran A. (2015). Formulation of essential oil-loaded chitosan-alginate nanocapsules. J. Food. Drug Anal. 23, 560-568.
Neish A.S. (2002). The gut microflora and intestinal epithelial cells: A continuing dialogue. Microbs Infect. 4, 309-317.
Noori S., Zeynali F. and Almasi H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control. 84, 312-320.
Pan D. and Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 5, 108-119.
Pedro A., Santo S.I.E., Silva C.V., Detoni C. and Albuquerque E. (2013). The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. Formatex. 2, 1364-1374.
Peng Q.Y., Li J.D., Li Z., Duan Z.Y. and Wu Y.P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Anim. Feed Sci. Technol. 214, 148-153.
Phillips I., Casewell M., Cox T., De Groot B., Friis C., Jones R., Nightingale C., Preston R. and Waddell J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 53, 28-52.
Pirgozliev V., Bravo D., Mirza M.W. and Rose S.P. (2015). Growth performance and endogenous losses of broilers fed wheat-based diets with and without essential oils and xylanase supplementation. Poult. Sci. 94, 1227-1232.
Platel K. and Srinivasan K. (2004). Digestive stimulant action of spices: A myth or reality? Indian J. Med. Res. 119, 167-179.
Rios A.C., Moutinho C.G., Pinto F.C., Del Fiol F.S., Jozala A., Chaud M.V., Vila M.M., Teixeira J.A. and Balcão V.M. (2016). Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol. Res. 191, 51-80.
Ronquillo M.G. and Hernandez J.C.A. (2017). Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control. 72, 255-267.
Salvia-Trujillo L., Rojas-Graü A., Soliva-Fortuny R. and Martín-Belloso O. (2015). Physicochemical characterization and antimicrobial activity of food- grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids. 43, 547-556.
Saracila M., Criste R., Panaite T., Vlaicu P., Tabuc C., Turcu R., and Olteanu M. (2018). Artemisia annua as phytogenic feed additive in the diet of broilers (14-35 days) reared under heat stress (32 ˚C). Brazilian J. Poult. Sci. 20, 825-832.
Singer R.S. and Hofacre C.L. (2006). Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161-172.
Singh P., Karimi A., Devendra K., Waldroup P.W., Cho K.K. and Kwon Y.M. (2013). Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 92, 272-276.
Smith-Palmer A., Stewart J. and Fyfe L. (2004). Influence of sub-inhibitory concentrations of plant essential oils on the production of enterotoxins A and B and alpha toxin by Staphylococcus aureus. J. Med. Microbiol. 53, 1023-1027.
Solè I., Pey C.M., Maestro A., González C., Porras M., Solans C., and Gutiérrez J.M. (2010). Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J. Colloid Interface Sci. 344, 417-423.
Sood S., Jain K. and Gowthamarajan K. (2014). Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces. 113, 330-337.
Stanton T.B. (2013). A call for antibiotic alternatives research. Trends Microbiol. 21, 111-113.
Sugumar S., Ghosh V., Nirmala M.J., Mukherjee A. and Chandrasekaran N. (2014). Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem. 21, 1044-1049.
Sugumar S., Mukherjee A. and Chandrasekaran N. (2015). Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on Listeria monocytogenes. Asian J. Pharm. 9, 23-28.
Suresh G., Das R., Kaur Brar S., Rouissi T., Avalos Ramirez A., Chorfi Y. and Godbout S. (2018). Alternatives to antibiotics in poultry feed: Molecular perspectives. Crit. Rev. Microbiol. 44, 318-335.
Topuz O.K., Özvural E.B., Zhao Q., Huang Q., Chikindas M. and Gölükçü M. (2016). Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem. 203, 117-123.
Toutain P.L., Ferran A.A., Bousquet-Melou A., Pelligand L. and Lees P. (2016). Veterinary medicine needs new green antimicrobial drugs. Front. Microbiol. 7, 1196-1203.
Upadhyay A., Arsi K., Upadhyaya I., Donoghue A.M. and Donoghue D.J. (2019). Food safety in poultry meat production. Pp. 67-93 in Food Safety in Poultry Meat Production. K. Venkitanarayanan, S. Thakur and S.C. Ricke, Eds. Springer, Cham, Switzerland.
Upadhyay A., Arsi K., Wagle B.R., Upadhyaya I., Shrestha S., Donoghue A.M. and Donoghue D.J. (2017). Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro. Front. Microbiol. 8, 1-12.
Upadhyaya I., Upadhyay A., Kollanoor-Johny A., Mooyottu S., Baskaran S.A., Yin H.B., Schreiber D.T., Khan M.I., Darre M.J. Curtis P.A. and Venkitanarayanan K. (2015). In-feed supplementation of trans-cinnamaldehyde reduces layer-chicken egg-borne transmission of Salmonella enterica serovar enteritidis. Appl. Environ. Microbiol. 81, 2985-2994.
Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A. and Laxminarayan R. (2015). Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 112, 5649-5654.
Vandamme T.F. and Anton N. (2010). Low-energy nanoemulsification to design veterinary controlled drug delivery devices. Int. J. Nanomed. 5, 867-873.
Venkitanarayanan K., Kollanoor-Johny A., Darre M.J., Donoghue A.M. and Donoghue D.J. (2013). Use of plant-derived antimicrobials for improving the safety of poultry products. Poult. Sci. 92, 493-501
Vermeulen B., De Backer P. and Remon J.P. (2002). Drug administration to poultry. Adv. Drug Deliv. Rev. 54, 795-803.
Vigan M. (2010). Essential oils: Renewal of interest and toxicity. European J. Dermatol. 20, 685-692.
Wang L., Dong J., Chen J., Eastoe J. and Li X. (2009). Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci. 330, 443-448.
Wegener H.C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6, 439-445.
Windisch W., Schedle K., Plitzner C. and Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86, 140-148.
Yang Y., Iji P.A. and Choct M. (2009). Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. Worlds Poult. Sci. J. 65, 97-114.
Yitbarek M.B. (2015). Phytogenics as feed additives in poultry production: A review. Int. J. Extensive Res. 3, 49-60.
Zhang S., Zhang M., Fang Z. and Liu Y. (2017). Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT Food Sci. Technol. 75, 316-322.
Zhang Z., Vriesekoop F., Yuan Q. and Liang H. (2014). Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem. 150, 307-312.
Zhao Y., Wang C., Chow A.H., Ren K., Gong T., Zhang Z. and Zheng Y. (2010). Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int. J. Pharm. 383, 170-177.