Application of Sinusoidal Equations to Partitioning Crude Protein and Metabolizable Energy Intake between Maintenance and Growth in Parent Stock of Broiler Chickens
محورهای موضوعی : Camelح. درمانی کوهی 1 , اس. لوپز 2 , آ. شعبانپور 3 , آ. محیط 4 , س. فلاحی 5 , جی. فرانس 6
1 - Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran
2 - Departamento de Producción Animal, Instituto de Ganadería de Montaña, Universidad de León, E-24007 León, Spain
3 - Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran
4 - Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran
5 - Department of Mathematics, Salman Farsi University of Kazerun, Kazerun, Iran
6 - Department of Animal Biosciences, Centre for Nutrition Modelling, University of Guelph, Guelph ON, N1G 2W1, Canada
کلید واژه: Protein, metabolizable energy, broiler parent stock, modeling growth, nutritional require-ments, sinusoidal functions,
چکیده مقاله :
Most models developed for poultry are linear to the point where genetic potential is reached. Models reliant on the premise that growth rate determines requirements based on some fixed rate of nutrient utilization do not adequately represent the biological phenomena involved. Therefore, a dichotomy between the accepted theories of nutrient utilization in animals and the assumptions of mathematical models to predict and analyze those requirements is evident. Since, responses of animals to dietary energy, protein and amino acids are curvilinear phenomena, they should be evaluated as such to estimate optimum economic levels, rather than as biological maxima. The objective of this study was to apply two sinusoidal functions exhibiting curvilinear behaviour to estimate metabolizable energy (ME) and crude protein (CP) requirements for maintenance and growth in parent stock of boiler chickens. The functions were fitted by non-linear regression to estimate the parameters, from which other biological indicators were calculated. The results of fitting the functions to data sets and their statistical performance and the biological interpretability of the parameter estimates showed the models’ capability in describing the relationship between body weight (BW) gain and ME (or CP) intake in parent stock of broiler chickens. The estimated maintenance requirements and the determined values of ME and CP requirements for BW gain were consistent with values reported previously by other researchers.
بیشتر مدلهای توسعهیافتهدر حد ظرفیت ژنتیکی رشد طیور خطی هستند. به هرحال، مدلهای خطی پایهریزی شده براساس مقادیر ثابت راندمان استفاده از مواد مغذی به طور مناسبی بیانگر فرایندهای ژنتیکی دخیل در رشد طیور نیستند. بنابراین، یک تناقض بین تئوریهای پذیرفته شده و فرضیات مدلهای ریاضی برای پیشبینی و آنالیز نیازمندیها آشکار است. از آنجایی که پاسخ حیوان به انرژی، پروتئین و اسیدهای آمینه ضروری یک فرایند خطی-منحنی است، بنابراین بایستی به همین نحو برای تخمین سطوح مطلوب اقتصادی ارزیابی شوند. موضوع این مطالعه بکارگیری دو تابع سینوسی با رفتار خطی-منحنی برای تخمین نیازمندیهای انرژی متابولیسمی و پروتئین خام برای نگهداری و رشد در گلههای هسته جوجههای گوشتی بود. توابع مدنظر با استفاده از رگرسیون غیر خطی برای تخمین پارامترهای استفاده شده جهت محاسبه مشخصههای بیولوژیکی برازش داده شدند. نتایج برازش توابع به دادهها و عملکرد آماری آنها و معنیداری بیولوژیکی تخمینهای پارامتری، قابلیت مدلها را در توصیف ارتباط بین انرژی (یا پروتئین) و افزایش وزن بدن را در هستههای والدینی جوجههای گوشتی نشان داد. نیازمندیهای نگهداری تخمین زده شده و مقادیر تعیین شده از نیازمندیهای انرژی و پروتئین برای افزایش وزن در مطابقت با مقادیر گزارش شده توسط سایر محققین بوده است.
Aviagen. (2017). Aviagen Ross 308 Parent Stock Management Guide. WebMD. http://en.aviagen.com/ross-308 Accessed Nov. 2017.
Bertalanffy L. (1957). Quantitative laws for metabolism and growth. Q. Rev. Biol. 32, 217-231.
Blaxter K.L. and Boyne A.W. (1978). The utilization of feed by sheep and cattle. J. Agric. Sci. 57, 419-425.
Boorman K.N. and Burgess A.D. (1986). Responses to amino acids. Pp. 99-123 in Nutrient Requirements of Poultry and Nutritional Research. C. Fisher and K. Boorman, Eds., Butterworths, London, United Kingdom.
Brody S. (1945). Bioenergetics and Growth. Reinhold Publishing Corp. New York, USA.
Chwalibog A. (1992). Factorial estimation of energy requirement for egg production. Poult. Sci. 71, 509-515.
Darmani Kuhi H., Kebreab E., López S. and France J. (2003). A comparative evaluation of functions for the analysis of growth in male broilers. J. Agric. Sci. 140, 451-459.
Darmani Kuhi H., Kebreab E., López S. and France J. (2004). A comparative evaluation of functions for describing the relationship between body-weight gain and metabolizable energy intake in turkeys. J. Agric. Sci. 142, 691-695.
Darmani Kuhi H., Kebreab E., López S. and France J. (2009). Application of the law of diminishing returns to estimate maintenance requirement for amino acids and their efficiency of utilization for accretion in young chicks. J. Agric. Sci. 147, 383-390.
Darmani Kuhi H., Porter T., López S., Kebreab E., Strathe A.B., Dumas A., Dijkstra J. and France J. (2010). A review of mathematical functions for the analysis of growth in poultry. World's Poult. Sci. J. 66, 227-240.
Darmani Kuhi H., Rezaee F., Faridi A., France J., Mottaghitalab M. and Kebreab E. (2011). Application of the law of diminishing returns for partitioning metabolizable energy and crude protein intake between maintenance and growth in growing male and female broiler breeder pullets. J. Agric. Sci. 149, 385-394.
Emmans G.C. (1974). The effect of temperature on performance of laying hens. Pp. 79-90 in Energy Requirements of Poultry. T.R. Morris and B.M. Freeman, Eds., British Poultry Science Ltd., Edinburgh, United Kingdom.
Ersoy İ.E., Mendeş M. and Aktan S. (2006). Growth curve establishment for American Bronze turkeys. Arch. Tierz. Dummerstor. 49, 293-299.
Fatufe A.A. and Rodehutscord M. (2005). Growth, body composition, and marginal efficiency of methionine utilisation are affected by nonessential amino acid supplementation in male broiler chicken. Poult. Sci. 84, 1584-1592.
Fitzhugh H.A. (1976). Analysis of growth curves and strategies for altering their shape. J. Anim. Sci. 42, 1036-1051.
France J., Dhanoa M.S., Cammell S.B., Gill M., Beever D.E. and Thornley J.H.M. (1989). On the use of response functions in energy balance analysis. J. Theor. Biol. 140, 83-99.
Gahl M.J., Crenshaw T.D. and Benevenga N.J. (1994). Diminishing returns in weight, nitrogen, and lysine gain of pigs fed six levels of lysine from three supplemental sources. J. Anim. Sci. 72, 3177-3187.
Gous R.M. (2007). Methodologies for modelling energy and amino acid responses in poultry. Rev. Bras. Zootecn. 36, 263-275.
Grossman M. and Bohren B.B. (1985). Logistic growth curve of chickens: heritability of parameters. J. Hered. 76, 459-462.
Johnson R.J. and Farrell D.J. (1983). Energy metabolism of groups of broiler breeders in open-circuit respiration chambers. British Poult. Sci. 24, 439-453.
Kebreab E., France J., Darmani Kuhi H. and López S. (2008). A comparative evaluation of functions for partitioning nitrogen and amino acid intake between maintenance and growth in broilers. J. Agric. Sci. 146, 163-170.
Kielauowski J. (1965). Estimates of the energy cost of protein deposition in growing animals. Pp. 13-20 in Proceedings of the Symposium on Energy Metabolism. K.L. Blaxter, Ed., Academic Press, London, United Kingdom.
Laird A.K. (1965). Dynamics of relative growth. Growth. 29, 249-263.
Leeson S., Lewis D. and Shrimpto D.H. (1973). Multiple linear regression equations for prediction of food intake in laying fowl. British Poult. Sci. 14, 595-608.
McDonald P., Edwards R.E., Greenhalgh J.F.D. and Morgan C. (2002). Animal Nutrition. Pearson Education Ltd., Harlow, United Kingdom.
Mignon-Grasteau S., Piles M., Varona L., De Rochambeau H., Poivey J.P., Blasco A. and Beaumont C. (2000). Genetic analysis of growth curve parameters for male and female chickens resulting from selection on shape of growth curve. J. Anim. Sci. 78, 2515-2524.
Mitscherlich E.A. (1909). Das gesetz des minimums und das Gesetz des abnehmenden Bodenertrages. Landwirtschaftliche Jahrbücher. 38, 537-552.
Nelder J.A. (1961). The fitting of a generalization of the logistic curve. Biometrics. 17, 89-110.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Pannemans D.L., Halliday D., Westerterp K.R. and Kester A.D. (1995). Effect of variable protein intake on whole-body protein turnover in young men and women. Am. J. Clin. Nutr. 61, 69-74.
Pesti G.M. and Miller B.R. (1997). Modelling for precision nutrition. J. Appl. Poult. Res. 6, 483-494.
Pomar C., Hauschild L., Zhang G.H., Pomar J. and Lovatto P.A. (2009). Applying precision feeding techniques in growing-finishing pig operations. Rev Bras.Zootecn. 38, 226-237.
Raji A.O., Alade N.K. and Duwa H. (2014). Estimation of model parameters of the Japanese quail growth curve using Gompertz model. Arch. Zootec. 63, 429-435.
Richards F.J. (1959). A flexible growth function for empirical use. J. Exp. Bot. 10, 290-300.
Riis P.M. (1983a). Proteins. Pp. 75-108 in Dynamic Biochemistry of Animal Production. M. Riis, Ed., Elsevier, Amsterdam, New York.
Riis P.M. (1983b). The pools of cellular nutrients: Amino acids. Pp. 151-172 in Dynamic Biochemistry of Animal ProductionM. Riis, Ed., Elsevier, Amsterdam, New York.
Romero L.F., Zuidhof M.J., Renema R.A., Robinson F.E. and Naeima A. (2009). Nonlinear mixed models to study metabolizable energy utilization in broiler breeder hens. Poult. Sci. 88, 1310-1320.
Sakomura N.K. (2004). Modeling energy utilization in broiler breeders, laying hens and broilers. Braz. J. Poult. Sci. 6, 1-11.
Systat Software Inc. (2011). Sigma Plot for Windows. Version 11. SS Inc., San Jose, CA, USA.
Thornley J.H.M. and France J. (2007). Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. CABI Publishing, Wallingford, United Kingdom.
Wiseman J. (1994). Nutrition and Feeding of Poultry. Nottingham University Press, Nottingham, United Kingdom.
Yakupoglu C. and Atil H. (2001). Comparison of growth curve models on broilers II. Comparison of models. Online J. Biol. Sci. 1, 682-684.