In vitro Utilizable Crude Protein at the Duodenum of Dairy Cows of Various Ecotypes of Kochia scoparia Fertilized with Nitrogen
محورهای موضوعی : Camelج. فلاحتی زو 1 , م. دانش مسگران 2 , ع.ر. وکیلی 3 , م. کافی 4 , م.د. استرن 5
1 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - گروه علوم دامی-دانشگاه فردوسی مشهد-مشهد-ایران
3 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
5 - Department of Animal Science, College of Agricultural, Food and Environmental Science, University of Minnesota, Minnesota, USA
کلید واژه: fermentability, metabolizable protein, forage cut, <i>Kochia scoparia</i>,
چکیده مقاله :
The aim of this study was to determine possible differences between first cut and second cut forage of Birjand ecotype of Kochia scoparia for chemical composition and fermentability, and to evaluate the changes may be induced by N fertilization in chemical composition, fermentability, and utilizable crude protein (uCP) supply at the duodenum of dairy cows of Sabzevar ecotype of Kochia. Birjand ecotype was sampled in mid bloom and Sabzevar ecotype was sampled in first bloom stage of maturity. Different in vitro gas production methods were used to determine gas production kinetics and uCP and effective uCP (EuCP) supply of the forage samples. Results of the first experiment showed that there is no significant difference between first cut and second cut forage of Kochia scoparia for gas production kinetics (P>0.05), but significantly lower content (g/kg DM basis) of neutral detergent fiber (NDF) (451.1) and hemicellulose (233.7) and higher content of CP (100.1) and ash (133.4) were observed in the first cut than those of the second cut plants (P<0.01). The results of second experiment indicated that the application of moderate levels of the N fertilizer (115 kg N/hectare) on Sabzevar stands of Kochia scoparia induced considerable changes in chemical composition, fermentability, and protein degradability of forge, so that, dry matter (DM), NDF, and hemicellulose declined and CP and ash content of forage increased (P<0.05). Moreover, the gas production kinetics decreased and supplied amounts of uCP and EuCP increased in association with increase in CP and true protein content (P<0.05).
هدف از انجام این مطالعه تعیین تفاوتهای احتمالی در ترکیب شیمیایی و تخمیرپذیری علوفه حاصل از بوم جور بیرجند گیاه کوشیا اسکوپاریا (Kochia scoparia) در چینهای اول و دوم بود. همچنین این مطالعه با هدف تعیین اثرات کود نیتروژنه بر ترکیب شیمیایی، تخمیرپذیری و قابلیت تأمین پروتئین خام قابل استفاده (در محل دوازدهه گاوهای شیری) بوم جور سبزوار گیاه کوشیا اسکوپاریا انجام شد. نمونههای بوم جور بیرجند در اواسط گل دهی و نمونههای بوم جور سبزوار بلافاصله در شروع گلدهی برداشت شدند. برای ارزیابی نمونههای علوفه از لحاظ فراسنجههای تخمیرپذیری و تعیین میزان مطلق و مؤثر تأمین پروتئین خام در محل دوازدهه گاوهای شیری از دستورالعملهای متفاوت روش برونتنی تولیدگاز استفاده شد. نتایج این مطالعه نشان داد که کوشیای بیرجند برداشت شده در چینهای اول و دوم از لحاظ فراسنجههای تولیدگاز تفاوت معنیداری با هم ندارند (05/0<P)، اما در مقایسه با چین دوم، به طور معنیداری مقدار (g/kg DM) الیاف نامحلول در شوینده خنثی (1/451) و همی سلوز (7/233) علوفه چین اول پایینتر و مقدار پروتئین (1/100) و خاکستر (4/134) آن بالاتر بود (01/0P<). نتایج آزمایش دوم نشان داد که کاربرد مقادیر متوسطی از کود شیمیایی نیتروژنه (115 کیلوگرم نیتروژن در هکتار) قادر است تا تغییرات قابل ملاحظهای را در ترکیب شیمیایی، تخمیرپذیری و تجزیهپذیری شکمبهای پروتئین علوفه کوشیای بوم جور سبزوار ایجاد کند، به طوریکه در نتیجه کوددهی، محتوای ماده خشک و الیاف نامحلول در شوینده خنثی علوفه کاهش و محتوای خاکستر و پروتئین خام آن افزایش یافت (05/0P<). افزون بر این در نتیجه کوددهی، فراسنجههای تخمیرپذیری علوفه کاهش یافتند و تأمین مقادیر مطلق و مؤثر پروتئین خام قابل استفاده در محل دوازدهه افزایش یافت که این افزایش با افزایش در محتوای پروتئین خام و پروتئین حقیقی علوفه کوددهی شده در ارتباط بود (05/0P<).
Abbasi D., Rouzbehan Y. and Rezaei J. (2012). Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus). Anim. Feed Sci. Technol. 171, 6-13.
Agbagla-Dohnani A., Noziere P., Gaillard-Martinie B., Puard M. and Doreau M. (2003). Effect of silica content on rice straw ruminal degradation. J. Agric. Sci. 140, 183-192.
AOAC. (2000). Official Methods of Analysis. Vol. I. 17th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Bae H.D., McAllister T.A., Kokko E.G., Leggett F.L., Yanke L.J., Jakober K.D., Ha J.K., Shin H.T. and Cheng K.J. (1997). Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65, 165-181.
Barnes P.W., Flint S.D. and Caldwell M.M. (1990). Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am. J. Bot. 77, 1354-1360.
Bilbro J.D., Undersander D.J., Fryrear D.W. and Lester C.M. (1991). A survey of lignin, cellulose, and acid detergent fiber ash contents of several plants and implications for wind erosion control. J. Soil Water Conserv. 46, 314-316.
Blummel M. and Becker K. (1997). The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 77, 757-768.
Boyer C.N., Griffith A.P., Roberts R.K., Savoy H.J. and Leib B.G. (2014). Managing nitrate levels in bermudagrass hay: Implications for net returns. J. ASFMRA. 2014, 25-40.
Campos F.P., Sampaio A.A.M., Bose M.L.V., Vieira P.F. and Sarmento P. (2004). Evaluation of in vitro gas production of roughages and their mixtures using curves subtraction method. Anim. Feed Sci. Technol. 116, 161-172.
Carter R.R. and Grovum W.L. (1990). A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. J. Anim. Sci. 68, 2811-2832.
Castle M.E. and Watson J.N. (1973). The relationship between the DM content of herbage for silage making and effluent production. J. British Grassl. Soc. 28, 135-138.
Chase L.E., Long T.A., Washko J.B. and Baumgardt B.R. (1976). Effect of nitrogen fertilization on constituents of alfalfa. J. Dairy Sci. 59, 170-174.
Cherney D.J.R., Cherney J.H. and Siciliano-Jones J. (1995). Alfalfa composition and in-sacco fiber and protein disappearance as influenced by nitrogen application. J. Appl. Anim. Res. 8, 105-120.
Cui J.H., Yang H.J., Yu C.Q., Bai S., Song S.S., Wu T.T., Sun W., Shao X.M. and Jiang L.S. (2016). Effect of urea fertilization on biomass yield, chemical composition, in vitro rumen digestibility and fermentation characteristics of forage oat straw in Tibet of China. J. Agric. Sci. 154, 914-927.
De Waal H.O., Baard M.A. and Engels E.A.N. (1989). Effects of sodium chloride on sheep. 2. Voluntary feed intake and changes in certain rumen parameters of young Merino wethers grazing native pasture. South African J. Anim. Sci. 19, 34-42.
Downing T.W., Buyserie A., Gamroth M. and French P. (2008). Effect of water soluble carbohydrates on fermentation characteristics of ensiled perennial ryegrass. Prof. Anim. Sci. 24, 35-39.
Du S., Xu M. and Yao J. (2016). Relationship between fibre degradation kinetics and chemical composition of forages and by-products in ruminants. J. Appl. Anim. Res. 44, 189-193.
Edmunds B., Südekum K.H., Spiekers H., Schuster M. and Schwarz F.J. (2012). Estimating utilisable crude protein at the duodenum, a precursor to metabolisable protein for ruminants, from forages using a modified gas test. Anim. Feed Sci. Technol. 175, 106-113.
Friesen L.F., Beckie H.J., Warwick S.I. and Van Acker R.C. (2009). The biology of Canadian weeds. 138. Kochia scoparia Schrad. Canadian J. Plant Sci. 89, 141-167.
Getachew G., DePeters E.J., Robinson P.H. and Fadel J.G. (2005). Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim. Feed Sci. Technol. 123, 547-559.
Hedqvist H. and Udén P. (2006). Measurement of soluble protein degradation in the rumen. Anim. Feed Sci. Technol. 126, 1-21.
Hoffman P.C., Sievert S.J., Shaver R.D., Welch D.A. and Combs D.K. (1993). In situ dry matter, protein, and fiber degradation of perennial forages. J. Dairy Sci. 76, 2632-2643.
Islam M.R., Garcia S.C. and Horadagoda A. (2012). Effects of residual nitrogen, nitrogen fertilizer, sowing data and harvest time on yield and nutritive value of forage rape. Anim. Feed Sci. Technol. 177, 52-64.
Jahani-Azizabadi H., Danesh Mesgaran M., Vakili A., Rezayazdi K. and Hashemi M. (2011). Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. African J. Microbiol. Res. 5, 4812-4819.
Kadereit G. and Freitag H. (2011). Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): Implications for biogeography, evolution of C4 photosynthesis and taxonomy. Taxon. 60, 51-78.
Kaplan M., Baran O., Unlukar A., Kale H., Arslan M., Kara K., Beyzi S.B., Konca Y. and Ulas A. (2016). The effects of different nitrogen doses and irrigation levels on yield, nutritive value, fermentation and gas production of corn silage. Turkish J. Field Crops. 21, 101-109.
Karlsson L., Hetta M., Udén P. and Martinsson K. (2009). New methodology for estimating rumen protein degradation using the in vitro gas production technique. Anim. Feed Sci. Technol. 153, 193-202.
Li C.J., Xu Z.H., Dong Z.X., Shi S.L. and Zhang J.G. (2016). Effects of nitrogen application rate on the yields, nutritive value and silage fermentation quality of whole-crop wheat. Asian Australasian J. Anim. Sci. 29, 1129-1135.
Licitra G., Hernandez T.M. and Van Soest P.J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57, 347-358.
López-Aguilar R., Rodriguez-Quezada G., Lucero-Arce A. and Naranjo-Murillo A. (2013). Use of high-salinity waters to grow Kochia scoparia Schrad as alternative fodder in saline environments in Northwestern Mexico. Interciencia. 38, 325-331.
Lovett D.K., Bortolozzo A., Conaghan P., O’Kiely P.O. and O’Mara F.P. (2004). In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage. Sci. 59, 227-232.
Lugg D.G., Cuesta P.A. and Norcross G.Y. (1983). Effect of N and P fertilization on yield and quality of kochia grown in the greenhouse. J. Crop and Soil. Sci. 14, 859-875.
Mambrini M. and Peyraud J.L. (1994). Mean retention time in digestive tract and digestion of fresh perennial ryegrass by lactating dairy cows: influence of grass maturity and comparison with maize silage diet. Reprod. Nutr. Dev. 34, 9-23.
Mangan J.L. (1982). The nitrogenous constituents of fresh forages. Pp. 25-40 in Forage Protein in Ruminant Animal Production. D.J. Thomson, Ed. Occasional publication no. 6. British Society of Animal Production, Thames Ditton, United Kingdom.
Mayland H., Mertens D., Taylor T., Burns J., Fisher D., Gregorini P., Ciavarella T., Smith K., Shewmaker G. and Griggs T. (2005). Diurnal changes in forage quality and their effects on animal preference, intake, and performance. Pp. 12-20 in Proc. California Alfalfa Symp., Visalia, CA. UC Coop. Ext., University of California, Davis, California.
Mengistu L.W. and Messersmith C.G. (2002). Genetic diversity of kochia. Weed Sci. 50, 498-503.
Menke K.H. and Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7-55.
Mir Z., Bittman S. and Townley-Smith L. (1991). Nutritive value of kochia (Kochia scoparia) hay or silage grown in a black soil zone in northeastern Saskatchewan for sheep. Canadian J. Anim. Sci. 71, 107-114.
Namihira T., Shinzato N., Akamine H., Maekawa H. and Matsui T. (2010). Influence of nitrogen fertilization on tropical-grass silage assessed by ensiling process monitoring using chemical and microbial community analyses. J. Appl. Microbiol. 108, 1954-1965.
Ørskov E.R. and McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. Cambridge. 92, 499-503.
Pacheco D. and Waghorn G. (2008). Dietary nitrogen-definitions, digestion, excretion and consequences of excess for grazing animal. J. New Zealand Grass. 70, 107-116.
Peyraud J.L. and Astigarraga L. (1998). Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage: consequences on animal nutrition and N balance. Anim. Feed Sci. Technol. 72, 235-259.
Reid R.L. and Strachan N.H. (1974). The effects of a wide range of nitrogen rates on some chemical constituents of the herbage from perennial ryegrass swards with and without white clover. J. Agric. Sci. Cambridge. 83, 393-401.
Rezvani Moghaddam P. and Koocheki A. (2003). A comprehensive survey of halophytes in Khorasan Province of Iran. Pp.189-195 in Cash Crop Halophytes: Recent Studies. H. Lieth and M. Mochtchenko Eds., Tasks for Vegetation Science. Springer, Dordrecht, The Netherlands.
Salehi M. and Kafi M. (2011). Suitable growth stage to start irrigation with saline water to increase salt tolerance and decrease ion accumulation of Kochia scoparia Schrad. Spanish J. Agric. Res. 9, 650-653.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Saskatchewan Agricultural Services Co-ordinating Committee. (1987). Guide to Farm practice in Saskatchewan. University of Saskatchewan, Division Extension and Community Relations, Saskatoon, Saskatoon, Canada.
Sherrod L.B. (1971). Nutritive value of Kochia scoparia. I. Yield and chemical composition at three stages of maturity. Agron. J. 63, 343-344.
Souto J. and Milano V.A. (1966). Triterpenic saponin in the ripe fruit of Kochia scoparia (Morenita). Rev. Invest. Agric. 3, 367-383.
Steppuhn H., Coxworth E., Kernan J., Green D. and Knipfel J. (1994). Response of Kochia scoparia to nitrogen fertilization on a saline soil. Canadian J. Soil Sci. 74, 267-275.
Thiex N., Novotny L. and Crawford A. (2012). Determination of ash in animal feed: AOAC official method 942.05 revisited. J. AOAC Int. 95, 1392-1397.
Undersander D.J., Durgan B.R., Kaminski A.R., Doll J.D., Worf G.L. and Schulte E.E. (1990). Alternative field crops manual. Available at: https://hort.purdue.edu/newcrop/afcm/kochia.html.
Van Soest P.J. (2006). Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130, 137-171.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Vavra M., Rice R.W., Hansen R.M. and Sims P.L. (1977). Food habits of cattle on shortgrass range in northeastern Colorado. J. Range Manag. 30, 261-263.
Weatherburn M.W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971-974.
Wilman D. (1975). Nitrogen and Italian ryegrass. 1. Growth up to 14 weeks: Dry-matter yield and digestibility. J. British Grassl. Soc. 30, 141-147.
Wilman D. and Wright P.T. (1978). Dry-matter content, leaf water potential and digestibility of three grasses in the early stages of regrowth after defoliation with and without applied nitrogen. J. Agric. Sci. Cambridge. 91, 366-380.