Modelling Anaerobic Digestion of Cow Manure to Predict Methane Flow Rate
محورهای موضوعی : Camelم. کمالی نسب 1 , ع. وکیلی 2 , م. دانش مسگران 3 , ر. ولی زاده 4 , س.ر. نبوی 5
1 - Department of Animal Science, Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Animal Science, Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
5 - Department of Animal Science, Excellence Center for Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
کلید واژه: mathematical model, anaerobic digestion, biogas, livestock waste,
چکیده مقاله :
Anaerobic digestion (AD) of biowastes is one of the most common ways to produce methane-rich biogas, which has considerable potential to replace the fossil fuel used in multiple applications, such as vehicular transportation, internal combustion engines, cogeneration of heat and power systems and many other systems. Many companies are involved in the design and construction of anaerobic digestion systems. Empirical methods have been used to improve AD facilities, but these have needed time-consuming studies and construction of expensive prototype systems. On the other hand, design and optimization of AD processes for biogas production can be enhanced via validated mathematical models. In this paper a dynamic mathematical model has been developed to a pilot anaerobic reactor fed dairy cow / cattle manure. The model is based upon material balances and comprises four state variables, namely biodegradable volatile solids, acid generating microbes (acidogens), methane generating microbes (methanogens) and volatile fatty acids. The model predicts the methane gas flow produced in the reactor. At the end, a sensitivity analysis is done to show how the gas flow rate, maximum reaction rate of acidogens, maximum reaction rate of methanogens, reaction rate of acidogens and reaction rate of methanogens and solid retention time, would change due to changes of some key parameters such as: reactor temperature and also reactor volume.
هاضم بیهوازی ضایعات زیستی یکی از رایجترین راهها برای تولید بایوگاز غنی از متان میباشد، که پتانسیل قابلتوجهی برای جایگزین شدن با سوختهای فسیلی دارد که در کاربردهای متعددی از قبیل حمل و نقل، موتورهای احتراق داخلی، سیستمهای تولید همزمان برق و حرارت و بسیاری از سیستمهای دیگر، استفاده میشوند. شرکتهای بسیاری در طراحی و ساخت سیستمهای بیهوازی به فعالیت پرداختهاند. روشهای تجربی برای بهبود امکانات هاضم بیهوازی استفاده شده است، اما این امر نیازمند مطالعات زمانبر و ساخت سیستمهای نمونه گران قیمت میباشد. از طرف دیگر، طراحی و بهینهسازی فرآیندهای هضم بیهوازی برای تولید بایوگاز میتواند از طریق مدلهای ریاضی اعتبار سنجی شده توسعه یابد. در این مقاله یک مدل ریاضی پویا برای یک راکتور بیهوازی که با کود گاو شیری تغذیه میشود توسعه داده شده است. مدل بر مبنای توازن مواد بوده، و شامل چهار متغیر حالت به نامهای جامدات فرار زیست تخریب پذیر، میکروبهای تولیدکننده اسید، میکروبهای تولیدکننده متان و اسیدهای چرب فرار میباشند. مدل مقدار گاز متان تولید شده در راکتور را پیشبینی میکند. در پایان این مطالعه یک تحلیل حساسیت انجام شده است تا نشان دهد که چگونه مقدار گاز تولید شده، حداکثر سرعت واکنش میکروبهای تولیدکننده اسید، حداکثر سرعت واکنش میکروبهای تولیدکننده متان، سرعت واکنش میکروبهای تولیدکننده اسید و سرعت واکنش میکروبهای تولیدکننده متان و همچنین زمان ماند مواد جامد، در اثر تغییر برخی از پارامترهای کلیدی مانند دما و حجم راکتور تغییر خواهند کرد.
Andrews J.F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Bio technol. Bioengin. 10, 707-723.
AngelidakiI., Ellegaard L. and Ahring B.K. (1999). A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol. Bioengin. 63, 363-372.
Appels L., Baeyens J., Degrève J. and Dewil R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755-781.
Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V. and Pavlostathis S.G. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45, 65-73.
Cakir F.Y. and Stenstrom M.K. (2005). Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Res. 39, 4197-4203.
Chunlan M., Yongzhong F., Xiaojiao W. and Guangxin R. (2015). Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45, 540-555.
Cisneros G.L., López R.A. and Femat R. (2015). On the dynamic optimization of methane production in anaerobic digestion via extremum-seeking control approach Comp. Chem. Engin. 75, 49-59.
Deublein D. and Steinhauser A. (2010). Biogas from Waste and Renewable Resources. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
Electrigaz Technologies Inc. (2007). Feasibility Study – Biogas upgrading and grid injection in the FraserValley, , BC Innovation Council, British Columbia.
Elsgaard L., Olsen A.B. and Petersen S.O. (2016). Temperature response of methane production in liquid manures and co-digestates. Sci. Total Environ. 539, 78-84.
Environmental Protection AgencyU.S. (2010). Anaerobic Digester Status Report. Pulished by United States Environmental Protection Agency, USA.
Graef S.P. and Andrews J.F. (1974). Mathematical modeling and control of anaerobic digestion. AIChE. Symp. Ser. 136, 101-131.
Haugen F., Bakke R. and Bernt L. (2013a). Adapting dynamic mathematical models to a pilot anaerobic Digestion Reactor. Modeling, Identification and Control. 34(2), 35-54.
Haugen F., Bakke R., Vasdal K. and Bergland W. (2013b). Foss biolab. Available at: http://fossbiolab.no.
Husain A. (1998). Mathematical models of the kinetics of anaerobic digestion: a selected review. Biom. Bioenerg. 14(5), 561-571.
Jeyaseelan S. (1997). A simple mathematical model for anaerobic digestion process. Water Sci. Technol. 35, 185-191.
Jiang X., Sommer S.G. and Christensen K.V. (2011). A review of the biogas industry in China. Energy Policy. 39, 6073-6081.
Krzystek L., Ledakowicz S., Kahle H.J. and Kaczorek K. (2001). Degradation of household bio waste in reactors. Biotechnol.J. 92, 103-112.
Magnusson M. and Alvfors P. (2012). Biogas from mechanical pulping industry: Potential improvement for increased biomass vehicle fuels. Pp. 56-67 in Proc.Int. Conf. Efficiency. Cost. Optimiz. Simul. Energy Convers. Syst. Proc. Perugia, Italy.
Novak J.T., Sadler M.E. and Murthy S.N. (2003). Mechanisms of flock destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of bio solids. Water Res. 37, 3136-3144.
Rehl T. and Müller J. (2011). Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 56, 92-104.
Sanchez J.B., Quiroga Alonso J.M. and Coello Oviedo M.D. (2006). Use of microbial activity parameters for determination of a bio solid stability index. Bioresour. Technol. 97, 562-568.
Sawatdeenarunat C., Surendra K.C., Takara D., Oechsner H. and Khanal S.K. (2015). Anaerobic digestion of lignocellulosic biomass: challenges and opportunities, Bioresour. Technol. 178, 178-186.
Stamatelatou K., Syrou L., Kravaris C. and Lyberatos G. (2009). An invariant manifold approach for CSTR model reduction in the presence of multi-step biochemical reaction schemes. Application to anaerobic digestion. Chem. Engin. J. 150, 462-475.
Tambone F., Scaglia B., D’Imporzano G., Schievano A., Orzi V. and Salati S. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative estudy with digested sludge and compost. Chemosphere.81, 577-583.
Tauseef S.M., Premalatha M., Tasneem Abbasi S.A. and Abbasi S.A. (2013). Methane capture from livestock manure. J. Environ. Manag. 117, 187-207.
Tchobanoglous G., Burton F.G. and Stensel H.D. (2003). Wastewater Engineering: Treatment and Reuse. McGraw Hill. Boston, NY.
Tomei M.C., Braguglia C.M., Cento G. and Mininni G. (2009). Modeling of anaerobic digestion of sludge. Crit. Rev. Environ. Sci. Technol. 39, 1003-1051.
Vavilin V.A., Lokshina L.Y., Flotats X. and Angelidaki I. (2007). Anaerobic digestion of solid material: multidimensional modeling of continuous-flow reactor with non uniform influent concentration distributions. Biotechnol. Bioengin. 97, 354-366.