Quantitative Trait Loci Affecting Milk Production Traits on BTA 14 in Iranian Holstein Dairy Cattle: A Confirmation
محورهای موضوعی : Camelم. نوری صادق 1 , س. انصاری-مهیاری 2 , م.پ. اسکندری نسب 3 , ف. رفیعی 4
1 - Department of Animal Science, College of Agriculture, University of Zanjan, Iran
2 - Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
3 - Department of Animal Science, College of Agriculture, University of Zanjan, Iran
4 - Department of Agricultural Biotechnology, Faculty of Agricultural Science, University of Guilan, Rasht, Iran
کلید واژه: milk production, QTL, Iranian Holstein cows, LA, LDLA,
چکیده مقاله :
The aim of this study was to refine the position of previously detected quantitative trait loci (QTL) on bovine chromosome 14 affecting milk production traits, using both linkage analysis (LA) and combined disequilibrium and linkage analysis (LDLA) methods, in Iranian Holstein dairy cattle. Analysis data was LRT (likelihood ratio test) and computed using the DMU (estimate the (co)variance components based on the average information of restricted maximum likelihood) and the results were compared with chi-square test and finally, the most likely location of QTLs was identified (P<0.05). A daughter design with 232 daughters from 10 sire families were considered and 10 microsatellite markers with a map distance of 0 to 63 cM located between markers ILSTS039 and DIK4361 (ILSTS011, DIK2598, DIK4884, DIK5080, CBDIKM002, ILSTS039, BM1508, CSSM066, CBDIKM004, and DIK4361) were genotyped. For milk and fat yield traits, the two mapping methods revealed a highly significant QTL was located within 20 to 60 and 54 to 60 cM interval (using LA) and within 12 to 60 and 60 cM interval (using LDLA), respectively. For fat percentage, a highly significant QTL was detected within 3, 12, 20, 36, 44 and 50 cM (using LA), but for LDLA, no significant location was detected. These results confirmed the findings of suggestive QTLs affecting milk production traits in the previous studies. Besides, the identified QTL in this study could be considered for marker-assisted evaluation and also for the selection of a refined set of candidate genes affecting the economic traits in Iranian dairy cattle breeding schemes.
هدف از این تحقیق، تعیین جایگاه های صفات کمی (QTL) مؤثر بر صفات تولید شیر بر روی کروموزوم 14 گاوی با استفاده از دو روش تجزیه پیوستگی (LA) و عدم تعادل پیوستگی (LDLA) و مقایسه این دو روش در جمعیت هلشتاین ایران بود. تجزیه و تحلیل داده ها با آزمون نسبت درست نمایی (LRT) محاسبه و جهت برآورد مؤلفه های واریانس و کوواریانس بر اساس میانگین حداکثر احتمال اطلاعات از نرم افزار DMU استفاده و نتایج با آزمون مربع کای مقایسه شده و در نهایت محتمل ترین مکان ها برای صفات مورد نظر در سطح 5 درصد گزارش گردیدند. در این تحقیق تعیین ژنوتیپ بر مبنای طرح دختری با 232 دختر از 10 خانواده پدری و 10 نشانگر ریزماهواره در فاصله بین 0 تا 63 سانتیمورگان از نقشه، بین نشانگرهای ILSTS039 و DIK4361 (ILSTS011، DIK2598، DIK4884، DIK5080، CBDIKM002، ILSTS039، BM1508، CSSM066، CBDIKM004 و DIK4361) انجام گردید. برای صفات تولید شیر و تولید چربی در دو روش مورد استفاده به ترتیب، بیشترین معنیداری برای جایگاه QTL در فاصله های، 20 تا 60 و 54 تا 60 سانتیمورگان (با استفاده از LA) و در فاصله های 12 تا 60 و 60 سانتیمورگان (با استفاده از LDLA) گزارش شد. برای صفت درصد چربی شیر، بیشترین معنیداری برای جایگاه QTL در نقاط 3، 12، 20، 36، 44 و 50 سانتیمورگان در روش LA شناسایی شد. اما در روش LDLA برای صفت درصد چربی شیر معنی داری مشاهده نگردید. نتایج حاصل از این تحقیق با گزارشات مطالعات قبلی برای QTL های شناسایی شده مطابقت دارد. جهت شناسایی QTL در این تحقیق انتخاب به کمک نشانگر و انتخاب و تأیید ژن های کاندیدا مؤثر بر صفات اقتصادی در طرح های اصلاح نژاد گاو شیری می تواند مفید باشد.
Alexander L.J., Rohrer G.A., Stone R.T. and Beattie C.W. (1995). Porcine SINE-associated microsatellite markers: Evidence for new artiodactyl SINEs. Mamm. Genome. 6(7), 464-468.
Aliloo H., Pryce J.E., González-Recio O., Cocks B.G. and Hayes B.J. (2015). Validation of markers with non-additive effects on milk yield and fertility in Holstein and Jersey cows. BMC Genet. 16, 89-97.
Alinaghizadeh R., Mohammad-Abadi M.R. and Moradnasab-Badrabadi S. (2007). Kappa-Casein gene study in Iranian Sistani cattle breed (Bos indicus) using PCR-RFLP. Pakistan J. Biologi. Sci. 10(23), 4291-4294.
Ansari-Mahyari S., Berg P. and Lund M.S. (2009). Fine mapping quantitative trait loci under selective phenotyping strategies based on linkage and linkage disequilibrium criteria. J. Anim. Breed. Genet. 126, 443-454.
Arranz J.J., Coppieters W., Berzi P.N., Cambisano B., Grisart L., Karim F., Marcq L., Moreau C., Mezer J., Riquet P., Simon P., Vanmanshoven D., Wagenaar A. and Georges M. (1998). A QTL affecting milk yield and composition maps to bovine chromosome 20: a confirmation. Anim. Genet. 29, 107-115.
Ashwell M.S., Da Y., Van Raden P.M., Rexroad C., Jr E. and Miller R.H. (1998). Detection of potential loci affecting conformation type traits in an elite US Holstein population using microsatellite markers. J. Dairy Sci. 81, 1120-1125.
Ashwell M.S., Heyen D.W., Sonstegard T.S., Van-Tassell C.P., Da Y.P., Van-Raden M., Weller M. and Lewin H.A. (2004). Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J. Dairy Sci. 87, 468-475.
Bagnato A., Schiavini F., Rossoni A., Maltecca C., Dolezal M., Medugorac I., Solkner J., Russo V., Fontanesi L., Friedmann A., Soller M. and Lipkin E. (2008). Quantitative trait loci affecting milk yield and protein percentage in a three-country Brown Swiss population. J. Dairy Sci. 91, 767-783.
Barazandeh A., Mohammad-Abadi M.R., Ghaderi M. and Nezamabadipour H. (2016). Predicting CpG Islands and their relation ship with genomic feature in cattle by hidden markov model algorithm. Iranian J. Appl. Anim. Sci. 6(3), 571-579.
Bennewitz J., Reinsch N., Paul S., Looft C., Kaupe B., Weimann C., Erhardt G., Thaller G., Kuhn C., Schwerin M., Thomsen H., Reinhardt F., Reents R. and Kalm E. (2004). The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14. J. Dairy Sci. 87, 431-442.
Biochard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y.Y., vonne-Boscher M. and Leveziel H. (2003). Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol. 35, 77-101.
Brezinsky L., Kemp S.J. and Teale A.J. (1993). Five polymorphic bovine microsatellites (ILSTS010-014). Anim Genet. 24(1), 75-76.
Cases S., Smith S.J., Zheng Y.W., Myers H.M., Lear S.R., Sande E., Novak S., Collins C., Welch C.B., Lusis A.J., Erickson S.K. and Farese R.V.J. (1998). Identification of a gene encoding an acyl CoA: Diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. 95(22), 13018-13023.
Coppieters W.J., Riquet J.J., Arranz P., Berzi N., Cambisano B., Grisart L., Karim F., Marcq L., Moreau C., Nezer P., Simon P., Vanmanshoven D. and Wagenaar D. (1998). A QTL with major effect on milk yield and composition maps to bovine Chromosome 14. Mamm. Genome. 9, 540-544.
Curnow K.M., Tusie-Luna M.T. and Pascoe L. (1991). The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol. Endocrinol. 5, 1513-1522.
Ebrahimi-Hoseinzadeh Z., Mohammad-Abadi M.R., Esmailizadeh A.K., Khezri A. and Najmi-Noori A. (2015a). Association of PIT1 gene with milk fat percentage in Holstein cattle. Iranian J. Appl. Anim. Sci. 5(3), 575-582.
Esmailizadeh A.K., Pitchford W.S., Bottema C.D.K., Verbyla A.P. and Gilmour A.R. (2006). Mapping multiple QTL for birth weight in cattle growth using a mixed model approach. Pp. 17-20 in Proc. 8th World Congr. Genet. Appl. Livest. Prod., Belo Horizonte, Brazil.
Furbass R., Winter A., Fries F. and Kuhn C. (2006). Alleles of the bovine DGAT1 variable number of tandem repeat associated with a milk fat QTL at chromosome 14 can stimulate gene expression. Physiol. Genomics. 25, 116-120.
Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A., Sargeant T.L.S.A., Sorensen M., Steele R. and Zhao X. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 139, 907-920.
Grisart B., Coppieters W., Farnir F., Karim L., Ford C., Berzi P., Cambisano N., Mni M., Reid S., Simon P., Spelman R., Georges M. and Snell R. (2002). Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 12, 222-231.
Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Da Y., Wiggan G.R., Vanraden P.M. and Lewin H.A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. J. Physiol. Genome. 1, 165-175.
Hu F., Liu J., FZ B., Zeng X., Ding D., Yin C., Gong C. and Zhang Y.Z. (2010). QTL identification using combined linkage and linkage disequilibrium mapping for milk production traits on BTA6 in Chinese Holstein population. Asian-Australasian J. Anim. Sci. 23, 1261-1267.
Ihara N., Takasuga A., Mizoshita K., Takada H., Sugimoto M., Mizoguchi Y., Hirano T., Itoh T., Watanabe T., Reed K.M., Snelling W.M., Kappes S.M., Beattie C.W., Bennett G.L. and Sugimoto Y. (2004). A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14, 1987-1998
Iso-Touru T., Sahana G., Guldbrandtsen B., Lund M.S. and Vilkki J. (2016). Genome-wide association analysis of milk yield traits in Nordic Red cattle using imputed whole genome sequence variants. BMC Genet. 17, 55.
Javanmard A., Mohammad-Abadi M.R., Zarrigabayi G.E., Gharahedaghi A.A., Nassiry M.R., Javadmansh A. and Asadzadeh N. (2008). Polymorphism within the intron region of the bovine leptin gene in Iranian Sarabi cattle (Iranian Bos taurus). Russian J. Genet. 44(4), 495-497.
Kashi Y.E., Hallerman E. and Soller M. (1990). Marker-assisted selection of candidate bulls for progeny testing programmes. Anim. Prod. 51, 63-74.
Kaupe B., Brandt H., Prinzenberg E.M. and Erhardt G. (2007). Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein cattle. J. Anim. Sci. 85, 11-21.
Kawamoto T., Mitsuuchi Y. and Ohnishi T. (1990). Cloning and expression of a cDNA for human cytochrome P-450 aldo as related to primary aldosteronism. Biochem. Biophys. Res. Commun. 173, 309-316.
Kemp S.J., Hishida O., Wambugu J., Rink A., Longeri M.L., Ma R.Z., Da Y., Lewin H.A., Barendse W. and Teale A.J. (1995). A panel of polymorphic bovine, ovine and caprine microsatellite markers. Anim. Genet. 26(5), 299-306.
Kharrati-Koopaei H., Mohammad-Abadi M.R., Ansari-Mahyari S., Tarang A.R., Potki P. and Esmailizadeh A.K. (2012a). Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Anim. Sci. Pap. Rep. 30(3), 231-240.
Kharrati-Koopaei H., Mohammad-Abadi M.R., Tarang A. and Esmailizadeh A.K. (2012b). Study of the association between the allelic variations in DGAT1 gene with mastitis in Iranian Holstein cattle. J. Mod. Genet. 7(1), 101-104.
Khatkar M., Thomson C., Tammen I. and Raadsma H.W. (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36, 163-190.
Kühn C., Freyer G., Weikard R., Goldammer T. and Schwerin M. (1999). Detection of QTL for milk production traits in cattle by application of a specifically developed marker map of BTA6. Anim. Genet. 30, 333-340.
Maddox J.F., Davies K.P., Crawford A.M., Hulme D.J., Vaiman D., Cribiu E.P., Freking B.A., Beh K.J., Cockett N.E., Kang N., Riffkin C.D., Drinkwater R., Moore S.S., Dodds K.G., Lumsden J.M., Van Stijn T.C., Phua S.H., Adelson D.L., Burkin H.R., Broom J.E., Buitkamp J., Cambridge L., Cushwa W.T., Gerard E., Galloway S.M., Harrison B., Hawken R.J., Hiendleder S., Henry H.M., Medrano J.F., Paterson K.A., Schibler L., Stone R.T. and Van Hest B. (2001). An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 11, 1275-1289.
Madsen P. and Jensen J. (2002). A user’s guide to DMU. A Package for Analyzing Multivariate Mixed Models. Danish Institute of Agricultural Sciences, Tjele, Denmark.
Martin P., Palhière I., Maroteau C., Bardou P., Canale-Tabet K., Sarry J., Woloszyn F., Bertrand-Michel J., Racke I., Besir H., Rupp R. and Tosser-Klopp G. (2017). A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Sci. Rep. 7(1), 1872.
Meuwissen T.H.E. and Goddard M.E. (1996). The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28, 161-176.
Meuwissen T.H.E. and Goddard M.E. (2001). Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33, 605-634.
Mohammad-Abadi M.R., Torabi A., Tahmourespoor M., Baghizadeh A., Esmailizadeh A.K. and Mohammadi A. (2010). Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). African J. Biotechnol. 9(41), 6848-6852.
Mohammadi A., Nassiry M.R., Mosafer J., Mohammad-Abadi M.R. and Sulimova G.E. (2009). Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bos indicus). Russian J. Genet. 45(2), 198-202.
Nadesalingam J., Plante Y. and Gibson J.P. (2001). Detection of QTL for milk production on chromosomes 1 and 6 of Holstein cattle. Mamm. Genome. 12, 27-31.
Pasandideh M., Mohammad-Abadi M.R., Esmailizadeh A.K. and Tarang A. (2015). Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech J. Anim. Sci. 60, 97-104.
Ron M., Kliger D., Feldmesser E., Seroussi E. and Ezra E. (2001). Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by daughter design. Genetics. 159, 727-735.
Schnabel R.D., Sonstegard T.S., Taylor J.F. and Ashwell M.S. (2005). Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. Anim. Genet. 36, 408-416.
Sohrabi S.S., Esmailizadeh A.K., Babhizadeh A., Moradian H., Mohammad-Abadi M.R., Askari N. and Nasirifar E. (2012). Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. Anim. Prod. Sci. 52(11), 1012-1018.
Sorensen P., Lund M.S., Guldbrandtsen B., Jensen J. and Sorensen D. (2003). A comparison of bivariate and univariate QTL mapping in livestock populations. Genet. Sel. Evol. 35, 605-622.
Szyda J., Liu Z., Maschka R. and Reents R. (2005). Computer system for routine QTL detection and genetic evaluation under a mixed inheritance model in dairy cattle. Genet. Appl. Livest. Prod. 33, 249-250.
Velmala R.J., Vilkki K.T., Elo D.J., De Koning W. and Mäki-Tanila A.V. (1999). A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle. Anim. Genet. 30, 136-143.
Wang T., Fernando R.L., van der Beek S. and Grossman M. (1995). Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol. 27, 251-274.
Weyrich A. (2012). Preparation of genomic DNA from mammalian sperm. Curr. Protoc. Mol. Biol. 2(13), 1-3.