کاربرد شبکه عصبی مصنوعی وCellular Automata در مدل سازی و پیش بینی تغییرات کاربری اراضی شهر بوانات
محورهای موضوعی : مطالعات برنامه ریزی شهری و منطقه ای
1 - دانشیار گروه جغرافیا، واحد لارستان، دانشگاه آزاد اسلامی، لارستان، ایران
کلید واژه: ", کاربری اراضی ", سیستم اطلاعات مکانی", سنجش از دور", شبکه عصبی مصنوعی", شهر بوانات",
چکیده مقاله :
مقدمه: امروزه به دلیل ارزش بالای زمین و محدودیت منابع طبیعی در شهر بوانات پیش بینی تغییرات کاربری اراضی در این شهر از اهمیت بسزائی برخوردار است.هدف پژوهش: تعیین میزان توانائی در مدلسازی پدیده های مکان یابی در شهر بوانات یکی از اهداف اصلی تحقیق می باشد. روش شناسی: با توجه به کاربردی و توسعه ای بودن در این تحقیق از شبکه های عصبی مصنوعی برای کالیبراسیون مدل برای فاکتورهای مؤثر در شهر بوانات استفاده شده و از نرم افزار پردازش تصویر ENVI و Arc GIS بهره گرفته شده است.روش شناسی: با توجه به کاربردی و توسعه ای بودن در این تحقیق از شبکه های عصبی مصنوعی برای کالیبراسیون مدل برای فاکتورهای مؤثر در شهر بوانات استفاده شده و از نرم افزار پردازش تصویر ENVI و Arc GIS بهره گرفته شده است.قلمرو جغرافیایی پژوهش: شهرستان بوانات واقع در 240 کیلومتری شهر شیراز به مساحت 2/4992 کیلومترمربع می باشد که در موقعیت 46/30 درجه شمالی و 67/53 درجه شرقی قرار گرفته است.یافته ها: در طراحی مدلسازی رشد شهری در بوانات در بین سال های 2003 تا 2018 با استفاده از شبکه عصبی مصنوعی مشاهده شد که به دو دلیل عمده مدل مذکور جهت پیش بینی تغییرات کاربری اراضی شهر بوانات مناسب می باشد که دلیل اول آن میزان توانائی مدل CA و دلیل دوم دست یابی به مدلی برای تغییر و گسترش شهری با تغییر در کاربری اراضی شهری می باشد.نتیجه گیری: پس از بررسی یافته ها مشخص گردید که شبکه راه ها یکی از مهمترین عوامل در رشد و گسترش شهر بوانات بوده و علاوه بر آن درصد شیب زمین از پارامترهای مؤثر در مدلسازی شهر بوانات می باشد.
Introduction: Today, due to the high value of land and the limitation of natural resources in the city of Bowanat, it is very important to predict land use changes in this city.Research Aime: determining the level of ability in modeling the localization phenomena in the city of Bowanat is one of the main goals of the research. Methodology: considering the practicality and development in this research of artificial neural networks for calibrating the model for the effective factors in the city. Bowanat has been used and ENVI and Arc GIS image processing software have been used.Methodology: Due to practicality and development in this research, artificial neural networks were used to calibrate the model for effective factors in the city of Bowanat, and ENVI and Arc GIS image processing software were used.Studied Areas: Bowanat city is located 240 km from Shiraz city with an area of 4992.2 square kilometers, which is located at 30.46 degrees north and 53.67 degrees east.Results: In the design of urban growth modeling in Bowanat between 2003 and 2018 using artificial neural network, it was observed that for two main reasons, the mentioned model is suitable for predicting land use changes in Bowanat city, the first reason being the ability of the CA model and the reason The second is to achieve a model for urban change and expansion by changing urban land use.Conclusion: After examining the findings, it was found that the road network is one of the most important factors in the growth and expansion of Bowanat city, and in addition, the percentage of land slope is one of the effective parameters in the modeling of Bowanat city.Keywords: Land use, Fuzzy Logic, Artificial neural network, Bavanat city.
اسلمی، فرنوش؛ قربانی، اردوان؛ سبحانی، بهروز و پناهنده، محسن. (1394). ﻣﻘﺎﻳﺴﻪ روشﻫﺎی ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﻣﺼﻨﻮﻋﻲ، ﻣﺎﺷﻴﻦ ﺑﺮدار ﭘﺸﺘﻴﺒﺎﻧﻲ و ﺷﻲﮔﺮا در اﺳﺘﺨﺮاج ﻛﺎرﺑﺮی و ﭘﻮﺷﺶ اراﺿﻲ از ﺗﺼﺎوﻳﺮ ﻟﻨﺪﺳﺖ 8. نشریه ﺳﻨﺠﺶ از دور و ﺳﺎﻣﺎﻧﻪ اﻃﻼﻋﺎت ﺟﻐﺮاﻓﻴﺎﻳﻲ در ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ، 6(3)، 14 -1
احمدی، سیمین و ﺟﺒﺎری، محمد کاظم. (1391). ﻣﺪﻟﺴﺎزی ﺗﻮﺳﻌﻪ ﺷﻬﺮی ﺑـﺎ اﺳـﺘﻔﺎده از ﺳـﺎﻣﺎﻧﻪﻫـﺎی اﻃﻼﻋـﺎت ﺟﻐﺮاﻓﯿـﺎﯾﯽ (GIS) و ﺳﻠﻮلﻫﺎی ﺧﻮدﮐﺎر. زنجان: اﻧﺘﺸﺎرات آذر ﮐﻠﮏ.
آرونف، استین. (1392). ﺳﻨﺠﺶ از دور ﺑﺮای ﻣﺪﯾﺮان GIS. ترجمه منیژه رجبپوررحمتی، علیاصغر درویشصفت، مهتاب پیرباوقار، تهران: اﻧﺘﺸـﺎرات داﻧﺸﮕﺎه ﺗﻬﺮان.
ﺣﯿـﺪرﯾﺎن، پیمان؛ رﻧﮕــﺰن، کاظم؛ ﻣﻠﮑــﯽ، سعید و ﺗﻘــﯽزاده، ایوب. (1392). ﭘﺎﯾﺶ ﺗﻐﯿﯿﺮات ﮐﺎرﺑﺮی اراﺿﯽ ﺑﺎ اﺳﺘﻔﺎده از روش ﻣﻘﺎﯾﺴﻪ ﭘـﺲ از ﻃﺒﻘﻪ ﺑﻨﺪی ﺗﺼﺎوﯾﺮ ﻣﺎﻫﻮاره ﻟﻨﺪﺳﺖ (ﻣﻄﺎﻟﻌﻪ ﻣﻮردی: اراﺿـﯽ ﺷﻬﺮ ﺗﻬﺮان). نشریه ﺳﻨﺠﺶ از دور و ﺳﺎﻣﺎﻧﻪ اﻃﻼﻋﺎت ﺟﻐﺮاﻓﯿﺎﯾﯽ در ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ، 4(4)، 10-1.
سپهری، علیرضا، جمالی، علی اکبر، حسن زاده، محمد، (1398). تحلیل و مقایسه تغییرات کاربری / پوشش اراضی با استفاده از شبکه عصبی مصنوعی( مطالعه موردی اراضی تفت و مهریز)، سنجش از دور و سامانه اطلاعات جغرافیایی در منایع طبیعی، سال دهم، شماره چهارم، صص 90-105.
ضیائیان، پرویز؛ ربیعی، حمیدرضا و علیمحمدی، عباس. (1384). کشف و بازیابی تغییرات کاربری و پوشش اراضی شهر اصفهان به کمک سنجش از دور و سیستم اطلاعات جغرافیایی. نشریه برنامهریزی و آمایش فضا، 9(4)، 54-41.
فاطمی، سید باقر و رضایی، یوسف. (1389). مبانی سنجش از دور. تهران: انتشارات آزاده.
طاهری، فروزان؛ رهنما، محمدرحیم؛ خوارزمی، امیدعلی و خاکپور، براتعلی. (1397). بررسی و پیش بینی تغییرات کاربری اراضی با استفاده از دادههای ماهوارهای چندزمانة شهر شاندیز طی سالهای (1394-1379). جغرافیا و توسعه، 16(50)، 142-127.
ﻣﯿﺮزاﯾﯽزاده، وحید؛ ﻧﯿﮏﻧـﮋاد، مریم و اوﻻدی ﻗـﺎدﯾﮑﻼﯾﯽ، جعفر. (1394). ارزﯾﺎﺑﯽ اﻟﮕﻮرﯾﺘﻢﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی ﻧﻈﺎرت ﺷﺪه ﻏﯿﺮﭘﺎراﻣﺘﺮﯾﮏ در ﺗﻬﯿﻪ ﻧﻘﺸﻪ ﭘﻮﺷـﺶ زﻣـﯿﻦ ﺑـﺎ اﺳـﺘﻔﺎده از ﺗﺼـﺎوﯾﺮ ﻟﻨﺪﺳـﺖ 8. نشریه ﺳﻨﺠﺶ از دور و ﺳﺎﻣﺎﻧﻪ اﻃﻼﻋﺎت ﺟﻐﺮاﻓﯿﺎﯾﯽ در ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ، 6 (3)، 44-29.
Batty, M., Xie, Y., & Sun, Z .(1999). Modelling urban dynamics through GIS-based cellular automata. Computers Environment and Urban Systems, 23, 205–233.
Clarke, K C., Hoppen, S., & Gaydos, L. (2017). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning & Design, 24, 247–261.
Ding, Y., & Zhang, Y. K. (2006). the simulation of urban growth applying Sleuth Ca model to the Yilan Delta in Taiwan. Journal AlamBina, 9(1), 95-107.
Hagen, & Geotz, S J. (2012). Integrating Constrained Cellular Automata Models, GIS and Decision Support Tools for Urban Planning and Policy Making.
Lambin et al.,, Bishop, I. & Evans, D. (2015). Analysis of scale dependencies in an urban land-usechange model. International Journal of Geographical Information Science, 19(2), 217-241.
Lee & Yeh. (2010). Analysis of scale dependencies in an urban land-usechange model. International Journal of Geographical Information Science, 19(2), 217-241.
Li, X., & Yeh, A G. (2011). Simulating urban growth in a developing nation’s region using a CA-based model. Journal of Urban Planning and Development, 130(3), 145–158.
Monseruds & Leemans. (2010). Fundamental of land use planning. University of Tehran publication.
Nimrozi, N. (2007). An investigation of cultural consequents of slumber in Mashad City. Urban Planning & Management Conference – Iran Mashad.
Orce, MandXie, Y. (2005). From cells to cities. Environment and Planning B-Planning & Design, 21, S31–S38.
Rain, S., & Mahiny, A. (2018). Purifying training pixels in supervised classification of remote sensing imagery, case study: Tampa Bay Basin area (unpublished).
Salman Mahiny, A. (2005) Purifying training pixels in supervised classification of remote sensing imagery, case study: Gorgan area (unpublished).
Silva, E A., & Clarke, K C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers. Environment and Urban Systems, 26, 525-552.
Stalker, P. (2000). Handbook of World. Oxford University Press, New York.
Sun, Z., Deal, B., & Pallathuchril, W G. (2015). The Land use Evolution and Impact Assessment Model: A Comprehensive Urban Planning Support System.
Ulam & Von Neumann .(2012). Editorial: predicting land-use change. Agriculture, Ecosystems and Environment, 85, 1–6.
Walter. (2014). Using the SLEUTH urban growth model to simulate the impact of future policy scenarios on urban land use in the Houston–Galvestone–Brazoria CMSA. Research Journal of social science, 2, 82-72.
Yang, X., & Lo, C P. (2003). Modeling urban growth and landscape changes in the Atlanta metropolitan area. International Journal of Geographical Information Science, 17, 463–488.
_||_